Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Helps access various Fantasy Football APIs by handling authentication and rate-limiting, forming appropriate calls, and returning tidy dataframes which can be easily connected to other data sources.
The Fill-Mask Association Test ('FMAT') <doi:10.1037/pspa0000396> is an integrative, probability-based social computing method using Masked Language Models to measure conceptual associations (e.g., attitudes, biases, stereotypes, social norms, cultural values) as propositional semantic representations in natural language. Supported language models include BERT <doi:10.48550/arXiv.1810.04805> and its variants available at Hugging Face <https://huggingface.co/models?pipeline_tag=fill-mask>. Methodological references and installation guidance are provided at <https://psychbruce.github.io/FMAT/>.
Create Frequently Asked Questions page for Shiny application.
Compute maximum likelihood estimators of parameters in a Gaussian factor model using the the matrix-free methodology described in Dai et al. (2020) <doi:10.1080/10618600.2019.1704296>. In contrast to the factanal() function from stats package, fad() can handle high-dimensional datasets where number of variables exceed the sample size and is also substantially faster than the EM algorithms.
This package provides functions to fit regression models for bounded continuous and discrete responses. In case of bounded continuous responses (e.g., proportions and rates), available models are the flexible beta (Migliorati, S., Di Brisco, A. M., Ongaro, A. (2018) <doi:10.1214/17-BA1079>), the variance-inflated beta (Di Brisco, A. M., Migliorati, S., Ongaro, A. (2020) <doi:10.1177/1471082X18821213>), the beta (Ferrari, S.L.P., Cribari-Neto, F. (2004) <doi:10.1080/0266476042000214501>), and their augmented versions to handle the presence of zero/one values (Di Brisco, A. M., Migliorati, S. (2020) <doi:10.1002/sim.8406>) are implemented. In case of bounded discrete responses (e.g., bounded counts, such as the number of successes in n trials), available models are the flexible beta-binomial (Ascari, R., Migliorati, S. (2021) <doi:10.1002/sim.9005>), the beta-binomial, and the binomial are implemented. Inference is dealt with a Bayesian approach based on the Hamiltonian Monte Carlo (HMC) algorithm (Gelman, A., Carlin, J. B., Stern, H. S., Rubin, D. B. (2014) <doi:10.1201/b16018>). Besides, functions to compute residuals, posterior predictives, goodness of fit measures, convergence diagnostics, and graphical representations are provided.
Computes different multidimensional FD indices. Implements a distance-based framework to measure FD that allows any number and type of functional traits, and can also consider species relative abundances. Also contains other useful tools for functional ecology.
An API for automatic data queries to the fedstat <https://www.fedstat.ru>, using a small set of functions with a common interface.
FusionCharts provides awesome and minimalist functions to make beautiful interactive charts <https://www.fusioncharts.com/>.
Given a multivariate dataset and some knowledge about the dependencies between its features, it is customary to fit a statistical model to the features to infer parameters of interest. Such a procedure implicitly assumes that the sample is exchangeable. This package provides a flexible non-parametric test of this exchangeability assumption, allowing the user to specify the feature dependencies by hand as long as features can be grouped into disjoint independent sets. This package also allows users to test a dual hypothesis, which is, given that the sample is exchangeable, does a proposed grouping of the features into disjoint sets also produce statistically independent sets of features? See Aw, Spence and Song (2023) for the accompanying paper.
This package provides a dynamic programming algorithm for the fast segmentation of univariate signals into piecewise constant profiles. The fpop package is a wrapper to a C++ implementation of the fpop (Functional Pruning Optimal Partioning) algorithm described in Maidstone et al. 2017 <doi:10.1007/s11222-016-9636-3>. The problem of detecting changepoints in an univariate sequence is formulated in terms of minimising the mean squared error over segmentations. The fpop algorithm exactly minimizes the mean squared error for a penalty linear in the number of changepoints.
An easy framework to read FDA Adverse Event Reporting System XML/ASCII files <https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-latest-quarterly-data-files>.
This package provides functions for calculating various measures of foreign policy similarity or association commonly used in the study of international relations. These include Signorino and Ritter's S statistic (weighted and unweighted), Cohen's weighted kappa, Scott's pi, and Kendall's tau-b. The package facilitates the generation of dyadic similarity scores for empirical analyses and can also serve as an educational resource for understanding how such measures are derived.
Feature Ordering by Conditional Independence (FOCI) is a variable selection algorithm based on the measure of conditional dependence. For more information, see the paper: Azadkia and Chatterjee (2019),"A simple measure of conditional dependence" <arXiv:1910.12327>.
This package provides a series of utility functions to help with reshaping hierarchy of data tree, and reform the structure of data tree.
This package provides a tool for spatial/spatio-temporal modelling and prediction with large datasets. The approach models the field, and hence the covariance function, using a set of basis functions. This fixed-rank basis-function representation facilitates the modelling of big data, and the method naturally allows for non-stationary, anisotropic covariance functions. Discretisation of the spatial domain into so-called basic areal units (BAUs) facilitates the use of observations with varying support (i.e., both point-referenced and areal supports, potentially simultaneously), and prediction over arbitrary user-specified regions. `FRK` also supports inference over various manifolds, including the 2D plane and 3D sphere, and it provides helper functions to model, fit, predict, and plot with relative ease. Version 2.0.0 and above also supports the modelling of non-Gaussian data (e.g., Poisson, binomial, negative-binomial, gamma, and inverse-Gaussian) by employing a generalised linear mixed model (GLMM) framework. Zammit-Mangion and Cressie <doi:10.18637/jss.v098.i04> describe `FRK` in a Gaussian setting, and detail its use of basis functions and BAUs, while Sainsbury-Dale, Zammit-Mangion, and Cressie <doi:10.18637/jss.v108.i10> describe `FRK` in a non-Gaussian setting; two vignettes are available that summarise these papers and provide additional examples.
This package provides implementation of statistical methods for random objects lying in various metric spaces, which are not necessarily linear spaces. The core of this package is Fréchet regression for random objects with Euclidean predictors, which allows one to perform regression analysis for non-Euclidean responses under some mild conditions. Examples include distributions in 2-Wasserstein space, covariance matrices endowed with power metric (with Frobenius metric as a special case), Cholesky and log-Cholesky metrics, spherical data. References: Petersen, A., & Müller, H.-G. (2019) <doi:10.1214/17-AOS1624>.
Latent process embedding for functional network data with the Functional Adjacency Spectral Embedding. Fits smooth latent processes based on cubic spline bases. Also generates functional network data from three models, and evaluates a network generalized cross-validation criterion for dimension selection. For more information, see MacDonald, Zhu and Levina (2022+) <arXiv:2210.07491>.
This package provides a fast and scalable linear mixed-effects model (LMM) estimation algorithm for analysis of single-cell differential expression. The algorithm uses summary-level statistics and requires less computer memory to fit the LMM.
This package provides algorithms to fit linear regression models under several popular penalization techniques and functional linear regression models based on Majorizing-Minimizing (MM) and Alternating Direction Method of Multipliers (ADMM) techniques. See Boyd et al (2010) <doi:10.1561/2200000016> for complete introduction to the method.
Opens a shiny app which supports theoretical and computational analysis of block designs for symmetrical and mixed level factorial experiments. This package includes tools to check whether a design has orthogonal factorial structure (OFS) with balance or not and is able to find the orthogonality deviation value if not having OFS. This package includes function to evaluate efficiency factor of all factorial effects in two situations, in the first situation if the design is verified with OFS and balance then calculate the efficiencies of all factorial effects using a specific analytical procedure and in the second situation if the design is verified with non-OFS and balance then a new general method has been developed and used to calculate efficiencies under the condition that the design should be proper and equi-replicated, See Gupta, S.C. and Mukerjee, R. (1987): "A Calculus for factorial arrangements". Lecture Notes in Statistics. No. 59, Springer-Verlag, Berlin, New York, <doi:10.1007/978-1-4419-8730-3>. For the easy use of package, shiny app is used for giving inputs and inputs validation.
Frequentist assisted by Bayes (FAB) confidence interval construction. See Adaptive multigroup confidence intervals with constant coverage by Yu and Hoff <DOI:10.1093/biomet/asy009> and Exact adaptive confidence intervals for linear regression coefficients by Hoff and Yu <DOI:10.1214/18-EJS1517>.
Test function arguments with a wide array of inputs, and produce reports summarizing messages, warnings, errors, and returned values.
Estimation of mixed models including a subject-specific variance which can be time and covariate dependent. In the joint model framework, the package handles left truncation and allows a flexible dependence structure between the competing events and the longitudinal marker. The estimation is performed under the frequentist framework, using the Marquardt-Levenberg algorithm. (Courcoul, Tzourio, Woodward, Barbieri, Jacqmin-Gadda (2023) <arXiv:2306.16785>).
An implementation of various learning algorithms based on fuzzy rule-based systems (FRBSs) for dealing with classification and regression tasks. Moreover, it allows to construct an FRBS model defined by human experts. FRBSs are based on the concept of fuzzy sets, proposed by Zadeh in 1965, which aims at representing the reasoning of human experts in a set of IF-THEN rules, to handle real-life problems in, e.g., control, prediction and inference, data mining, bioinformatics data processing, and robotics. FRBSs are also known as fuzzy inference systems and fuzzy models. During the modeling of an FRBS, there are two important steps that need to be conducted: structure identification and parameter estimation. Nowadays, there exists a wide variety of algorithms to generate fuzzy IF-THEN rules automatically from numerical data, covering both steps. Approaches that have been used in the past are, e.g., heuristic procedures, neuro-fuzzy techniques, clustering methods, genetic algorithms, squares methods, etc. Furthermore, in this version we provide a universal framework named frbsPMML', which is adopted from the Predictive Model Markup Language (PMML), for representing FRBS models. PMML is an XML-based language to provide a standard for describing models produced by data mining and machine learning algorithms. Therefore, we are allowed to export and import an FRBS model to/from frbsPMML'. Finally, this package aims to implement the most widely used standard procedures, thus offering a standard package for FRBS modeling to the R community.