Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package contains functions for fitting shared frailty models with a semi-parametric baseline hazard with the Expectation-Maximization algorithm. Supported data formats include clustered failures with left truncation and recurrent events in gap-time or Andersen-Gill format. Several frailty distributions, such as the the gamma, positive stable and the Power Variance Family are supported.
Calculation and plotting of instantaneous unavailabilities of basic events along with the top event of fault trees are issues important in reliability analysis of complex systems. Here, a fault tree is provided in terms of its minimal cut sets, along with reliability and maintainability distribution functions of the basic events. All the methods are derived from Horton (2002, ISBN: 3-936150-21-4), Niloofar and Lazarova-Molnar (2022).
Accompanying package of the book Financial Risk Modelling and Portfolio Optimisation with R', second edition. The data sets used in the book are contained in this package.
Given the values of sampled units and selection probabilities the desraj function in the package computes the estimated value of the total as well as estimated variance.
Enable researchers to adjust identification rates using the 1/(lineup size) method, generate the full receiver operating characteristic (ROC) curves, and statistically compare the area under the curves (AUC). References: Yueran Yang & Andrew Smith. (2020). "fullROC: An R package for generating and analyzing eyewitness-lineup ROC curves". <doi:10.13140/RG.2.2.20415.94885/1> , Andrew Smith, Yueran Yang, & Gary Wells. (2020). "Distinguishing between investigator discriminability and eyewitness discriminability: A method for creating full receiver operating characteristic curves of lineup identification performance". Perspectives on Psychological Science, 15(3), 589-607. <doi:10.1177/1745691620902426>.
Fit occupancy models in Stan via brms'. The full variety of brms formula-based effects structures are available to use in multiple classes of occupancy model, including single-season models, models with data augmentation for never-observed species, dynamic (multiseason) models with explicit colonization and extinction processes, and dynamic models with autologistic occupancy dynamics. Formulas can be specified for all relevant distributional terms, including detection and one or more of occupancy, colonization, extinction, and autologistic depending on the model type. Several important forms of model post-processing are provided. References: Bürkner (2017) <doi:10.18637/jss.v080.i01>; Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>; Socolar & Mills (2023) <doi:10.1101/2023.10.26.564080>.
We implement the Fast Covariance Estimation for Sparse Functional Data paper published in Statistics and Computing <doi: 10.1007/s11222-017-9744-8>.
Calculation of AHP (Analytic Hierarchy Process - <http://en.wikipedia.org/wiki/Analytic_hierarchy_process>) with classic and fuzzy weights based on Saaty's pairwise comparison method for determination of weights.
This package provides a collection of utility functions for working with Year Month Day objects. Includes functions for fast parsing of numeric and character input based on algorithms described in Hinnant, H. (2021) <https://howardhinnant.github.io/date_algorithms.html> as well as a branchless calculation of leap years by Jerichaux (2025) <https://stackoverflow.com/a/79564914>.
FLR algorithm for classification.
The FMT method computes posterior residual variances to be used in the denominator of a moderated t-statistic from a linear model analysis of gene expression data. It is an extension of the moderated t-statistic originally proposed by Smyth (2004) <doi:10.2202/1544-6115.1027>. LOESS local regression and empirical Bayesian method are used to estimate gene specific prior degrees of freedom and prior variance based on average gene intensity levels. The posterior residual variance in the denominator is a weighted average of prior and residual variance and the weights are prior degrees of freedom and residual variance degrees of freedom. The degrees of freedom of the moderated t-statistic is simply the sum of prior and residual variance degrees of freedom.
The main function of this package allows numerical vector objects to be displayed with their values in vulgar fractional form. This is convenient if patterns can then be more easily detected. In some cases replacing the components of a numeric vector by a rational approximation can also be expected to remove some component of round-off error. The main functions form a re-implementation of the functions fractions and rational of the MASS package, but using a radically improved programming strategy.
An interactive shiny'-based tool for exploration and quality assurance and quality control (QA/QC) of eddy covariance flux tower data processing. It generates data-point removal code via user-directed selection from a scatterplot, and can export a cleaned .csv with removed points set to NA plus an R script for reproducibility. Reference: Key (2025) <DOI:10.5281/zenodo.15597159>.
This method is a new class of model selection strategies, for mixed model selection, which includes linear and generalized linear mixed models. The idea involves a procedure to isolate a subgroup of what are known as correct models (of which the optimal model is a member). This is accomplished by constructing a statistical fence, or barrier, to carefully eliminate incorrect models. Once the fence is constructed, the optimal model is selected from among those within the fence according to a criterion which can be made flexible. References: 1. Jiang J., Rao J.S., Gu Z., Nguyen T. (2008), Fence Methods for Mixed Model Selection. The Annals of Statistics, 36(4): 1669-1692. <DOI:10.1214/07-AOS517> <https://projecteuclid.org/euclid.aos/1216237296>. 2. Jiang J., Nguyen T., Rao J.S. (2009), A Simplified Adaptive Fence Procedure. Statistics and Probability Letters, 79, 625-629. <DOI:10.1016/j.spl.2008.10.014> <https://www.researchgate.net/publication/23991417_A_simplified_adaptive_fence_procedure> 3. Jiang J., Nguyen T., Rao J.S. (2010), Fence Method for Nonparametric Small Area Estimation. Survey Methodology, 36(1), 3-11. <http://publications.gc.ca/collections/collection_2010/statcan/12-001-X/12-001-x2010001-eng.pdf>. 4. Jiming Jiang, Thuan Nguyen and J. Sunil Rao (2011), Invisible fence methods and the identification of differentially expressed gene sets. Statistics and Its Interface, Volume 4, 403-415. <http://www.intlpress.com/site/pub/files/_fulltext/journals/sii/2011/0004/0003/SII-2011-0004-0003-a014.pdf>. 5. Thuan Nguyen & Jiming Jiang (2012), Restricted fence method for covariate selection in longitudinal data analysis. Biostatistics, 13(2), 303-314. <DOI:10.1093/biostatistics/kxr046> <https://academic.oup.com/biostatistics/article/13/2/303/263903/Restricted-fence-method-for-covariate-selection-in>. 6. Thuan Nguyen, Jie Peng, Jiming Jiang (2014), Fence Methods for Backcross Experiments. Statistical Computation and Simulation, 84(3), 644-662. <DOI:10.1080/00949655.2012.721885> <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891925/>. 7. Jiang, J. (2014), The fence methods, in Advances in Statistics, Hindawi Publishing Corp., Cairo. <DOI:10.1155/2014/830821>. 8. Jiming Jiang and Thuan Nguyen (2015), The Fence Methods, World Scientific, Singapore. <https://www.abebooks.com/9789814596060/Fence-Methods-Jiming-Jiang-981459606X/plp>.
Routines for exploratory and descriptive analysis of functional data such as depth measurements, atypical curves detection, regression models, supervised classification, unsupervised classification and functional analysis of variance.
Curry, Compose, and other higher-order functions.
Fit a fractional binomial regression model and extended zero-inflated negative binomial regression model to count data with excess zeros using maximum likelihood estimation. Compare zero-inflated regression models via Vuong closeness test.
This package provides a set of simplified functions for creating funnel plots for proportion data. This package supports user defined benchmarks, confidence limits and estimation methods (i.e. exact or approximate) based on Spiegelhalter (2005) <doi:10.1002/sim.1970>. Additional routines for returning scored unit level data according to a set of specifications is also implemented for convenience. Specifically, both a categorical and a continuous score variable is returned to the sample data frame, which identifies which observations are deemed extreme or in control. Typically, such variables are useful as stratifications or covariates in further exploratory analyses. Lastly, the plotting routine returns a base funnel plot ('ggplot2'), which can also be tailored.
This package contains financial math functions and introductory derivative functions included in the Society of Actuaries and Casualty Actuarial Society Financial Mathematics exam, and some topics in the Models for Financial Economics exam.
The function estimates a multivariate regression model for outcomes with network dependence.
Allows maximum likelihood fitting of cluster-weighted models, a class of mixtures of regression models with random covariates. Methods are described in Angelo Mazza, Antonio Punzo, Salvatore Ingrassia (2018) <doi:10.18637/jss.v086.i02>.
Growth models and forest production require existing data manipulation and the creation of new data, structured from basic forest inventory data. The purpose of this package is provide functions to support these activities.
This package provides functionality for clustering origin-destination (OD) pairs, representing desire lines (or flows). This includes creating distance matrices between OD pairs and passing distance matrices to a clustering algorithm. See the academic paper Tao and Thill (2016) <doi:10.1111/gean.12100> for more details on spatial clustering of flows. See the paper on delineating demand-responsive operating areas by Mahfouz et al. (2025) <doi:10.1016/j.urbmob.2025.100135> for an example of how this package can be used to cluster flows for applied transportation research.
This package provides a research estimation tool for analysts that work with sample-based inventory data from the U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) Program.