Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The fftab package stores Fourier coefficients in a tibble and allows their manipulation in various ways. Functions are available for converting between complex, rectangular ('re', im'), and polar ('mod', arg') representations, as well as for extracting components as vectors or matrices. Inputs can include vectors, time series, and arrays of arbitrary dimensions, which are restored to their original form when inverting the transform. Since fftab stores Fourier frequencies as columns in the tibble, many standard operations on spectral data can be easily performed using tidy packages like dplyr'.
Perform fuzzy joins on data frames using approximate string matching. Implements all standard join types (inner, left, right, full, semi, anti) with support for multiple string distance metrics from the stringdist package including Levenshtein, Damerau-Levenshtein, Jaro-Winkler, and Soundex. Features a high-performance data.table backend with C++ row binding for efficient processing of large datasets. Ideal for matching misspellings, inconsistent labels, messy user input, or reconciling datasets with slight variations in identifiers. Optionally returns distance metrics alongside matched records.
This is a fast and flexible implementation of the Kalman filter and smoother, which can deal with NAs. It is entirely written in C and relies fully on linear algebra subroutines contained in BLAS and LAPACK. Due to the speed of the filter, the fitting of high-dimensional linear state space models to large datasets becomes possible. This package also contains a plot function for the visualization of the state vector and graphical diagnostics of the residuals.
Streamlines the process of updating changelogs (NEWS.md) and versioning R packages developed in git repositories.
Supports the use of standardized folder names.
This package provides functions and example datasets for Fechnerian scaling of discrete object sets. User can compute Fechnerian distances among objects representing subjective dissimilarities, and other related information. See package?fechner for an overview.
The heterogeneous treatment effect estimation procedure proposed by Imai and Ratkovic (2013)<DOI: 10.1214/12-AOAS593>. The proposed method is applicable, for example, when selecting a small number of most (or least) efficacious treatments from a large number of alternative treatments as well as when identifying subsets of the population who benefit (or are harmed by) a treatment of interest. The method adapts the Support Vector Machine classifier by placing separate LASSO constraints over the pre-treatment parameters and causal heterogeneity parameters of interest. This allows for the qualitative distinction between causal and other parameters, thereby making the variable selection suitable for the exploration of causal heterogeneity. The package also contains a class of functions, CausalANOVA, which estimates the average marginal interaction effects (AMIEs) by a regularized ANOVA as proposed by Egami and Imai (2019). It contains a variety of regularization techniques to facilitate analysis of large factorial experiments.
Include a countdown <https://github.com/PButcher/flipdown> in all R contexts with the convenience of htmlwidgets'.
Genotyping assays for bi-allelic markers (e.g. SNPs) produce signal intensities for the two alleles. fitPoly assigns genotypes (allele dosages) to a collection of polyploid samples based on these signal intensities. fitPoly replaces the older package fitTetra that was limited (a.o.) to only tetraploid populations whereas fitPoly accepts any ploidy level. Reference: Voorrips RE, Gort G, Vosman B (2011) <doi:10.1186/1471-2105-12-172>. New functions added on conversion of data from SNP array software formats, drawing of XY-scatterplots with or without genotype colors, checking against expected F1 segregation patterns, comparing results from two different assays (probes) for the same SNP, recovery from a saveMarkerModels() crash.
This package contains the methods proposed by Geyer and Meeden (2005)<doi:10.1214/088342305000000340> and Trigo et al. (2025) <doi:10.47749/T/UNICAMP.2025.1500297> to construct fuzzy confidence intervals. Compute and plot the fuzzy membership functions of the methods, and the expected length compared with the infimum.
This package provides tools for quickly processing and analyzing field observation data and air quality data. This tools contain functions that facilitate analysis in atmospheric chemistry (especially in ozone pollution). Some functions of time series are also applicable to other fields. For detail please view homepage<https://github.com/tianshu129/foqat>. Scientific Reference: 1. The Hydroxyl Radical (OH) Reactivity: Roger Atkinson and Janet Arey (2003) <doi:10.1021/cr0206420>. 2. Ozone Formation Potential (OFP): <http://ww2.arb.ca.gov/sites/default/files/barcu/regact/2009/mir2009/mir10.pdf>, Zhang et al.(2021) <doi:10.5194/acp-21-11053-2021>. 3. Aerosol Formation Potential (AFP): Wenjing Wu et al. (2016) <doi:10.1016/j.jes.2016.03.025>. 4. TUV model: <https://www2.acom.ucar.edu/modeling/tropospheric-ultraviolet-and-visible-tuv-radiation-model>.
Contingency Tables are a pain to work with when you want to run regressions. This package takes them, flattens them into a long data frame, so you can more easily analyse them! As well, you can calculate other related statistics. All of this is done so in a tidy manner, so it should tie in nicely with tidyverse series of packages.
Fits Zeta distributions (discrete power laws) to data that arises from forensic surveys of clothing on the presence of glass and paint in various populations. The general method is described to some extent in Coulson, S.A., Buckleton, J.S., Gummer, A.B., and Triggs, C.M. (2001) <doi:10.1016/S1355-0306(01)71847-3>, although the implementation differs.
Implementation of Forecastable Component Analysis ('ForeCA'), including main algorithms and auxiliary function (summary, plotting, etc.) to apply ForeCA to multivariate time series data. ForeCA is a novel dimension reduction (DR) technique for temporally dependent signals. Contrary to other popular DR methods, such as PCA or ICA', ForeCA takes time dependency explicitly into account and searches for the most forecastable signal. The measure of forecastability is based on the Shannon entropy of the spectral density of the transformed signal.
Emulates a Forth programming environment with added features to interface between R and Forth'. Implements most of the functionality described in the original "Starting Forth" textbook <https://www.forth.com/starting-forth/>.
Fits a functional mediation model with a scalar distal outcome. The method is described in detail by Coffman, Dziak, Litson, Chakraborti, Piper & Li (2021) <arXiv:2112.03960>. The model is similar to that of Lindquist (2012) <doi:10.1080/01621459.2012.695640> although allowing a binary outcome as an alternative to a numerical outcome. The current version is a minor bug fix in the vignette. The development of this package was part of a research project supported by National Institutes of Health grants P50 DA039838 from the National Institute of Drug Abuse and 1R01 CA229542-01 from the National Cancer Institute and the NIH Office of Behavioral and Social Science Research. Content is solely the responsibility of the authors and does not necessarily represent the official views of the funding institutions mentioned above. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
This package implements methods for network estimation and forecasting of high-dimensional time series exhibiting strong serial and cross-sectional correlations under a factor-adjusted vector autoregressive model. See Barigozzi, Cho and Owens (2024+) <doi:10.1080/07350015.2023.2257270> for further descriptions of FNETS methodology and Owens, Cho and Barigozzi (2024+) <arXiv:2301.11675> accompanying the R package.
This package provides access to a range of functions for computing and visualizing the Full Bayesian Significance Test (FBST) and the e-value for testing a sharp hypothesis against its alternative, and the Full Bayesian Evidence Test (FBET) and the (generalized) Bayesian evidence value for testing a composite (or interval) hypothesis against its alternative. The methods are widely applicable as long as a posterior MCMC sample is available.
Simplifies the process of importing and managing input-output matrices from Microsoft Excel into R, and provides a suite of functions for analysis. It leverages the R6 class for clean, memory-efficient object-oriented programming. Furthermore, all linear algebra computations are implemented in Rust to achieve highly optimized performance.
The Food and Agriculture Organization of the United Nations (FAO) FishStat database is the leading source of global fishery and aquaculture statistics and provides unique information for sector analysis and monitoring. This package provides the global production data from all fisheries and aquaculture in R format, ready for analysis.
Create interactive flow maps using FlowmapBlue TypeScript library <https://github.com/FlowmapBlue/FlowmapBlue>, which is a free tool for representing aggregated numbers of movements between geographic locations as flow maps. It is used to visualize urban mobility, commuting behavior, bus, subway and air travels, bicycle sharing, human and bird migration, refugee flows, freight transportation, trade, supply chains, scientific collaboration, epidemiological and historical data and many other topics. The package allows to either create standalone flow maps in form of htmlwidgets and save them in HTML files, or integrate flow maps into Shiny applications.
FamSKAT-RC is a family-based association kernel test for both rare and common variants. This test is general and several special cases are known as other methods: famSKAT, which only focuses on rare variants in family-based data, SKAT, which focuses on rare variants in population-based data (unrelated individuals), and SKAT-RC, which focuses on both rare and common variants in population-based data. When one applies famSKAT-RC and sets the value of phi to 1, famSKAT-RC becomes famSKAT. When one applies famSKAT-RC and set the value of phi to 1 and the kinship matrix to the identity matrix, famSKAT-RC becomes SKAT. When one applies famSKAT-RC and set the kinship matrix (fullkins) to the identity matrix (and phi is not equal to 1), famSKAT-RC becomes SKAT-RC. We also include a small sample synthetic pedigree to demonstrate the method with. For more details see Saad M and Wijsman EM (2014) <doi:10.1002/gepi.21844>.
This package provides the function fancycut() which is like cut() except you can mix left open and right open intervals with point values, intervals that are closed on both ends and intervals that are open on both ends.
Convenient functions for ensemble forecasts in R combining approaches from the forecast package. Forecasts generated from auto.arima(), ets(), thetaf(), nnetar(), stlm(), tbats(), snaive() and arfima() can be combined with equal weights, weights based on in-sample errors (introduced by Bates & Granger (1969) <doi:10.1057/jors.1969.103>), or cross-validated weights. Cross validation for time series data with user-supplied models and forecasting functions is also supported to evaluate model accuracy.