Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Facilitate the analysis of data related to aquatic ecology, specifically the establishment of carbon budget. Currently, the package allows the below analysis. (i) the calculation of greenhouse gas flux based on data obtained from trace gas analyzer using the method described in Lin et al. (2024). (ii) the calculation of Dissolved Oxygen (DO) metabolism based on data obtained from dissolved oxygen data logger using the method described in Staehr et al. (2010). Yong et al. (2024) <doi:10.5194/bg-21-5247-2024>. Staehr et al. (2010) <doi:10.4319/lom.2010.8.0628>.
Plots simulation results of clinical trials. Its main feature is allowing users to simultaneously investigate the impact of several simulation input dimensions through dynamic filtering of the simulation results. A more detailed description of the app can be found in Meyer et al. <DOI:10.1016/j.softx.2023.101347> or the vignettes on GitHub'.
Set of functions for analyzing Atomic Force Microscope (AFM) force-distance curves. It allows to obtain the contact and unbinding points, perform the baseline correction, estimate the Young's modulus, fit up to two exponential decay function to a stress-relaxation / creep experiment, obtain adhesion energies. These operations can be done either over a single F-d curve or over a set of F-d curves in batch mode.
The main application concerns to a new robust optimization package with two major contributions. The first contribution refers to the assessment of the adequacy of probabilistic models through a combination of several statistics, which measure the relative quality of statistical models for a given data set. The second one provides a general purpose optimization method based on meta-heuristics functions for maximizing or minimizing an arbitrary objective function.
We provide a stage-wise selection method using genetic algorithm which can perform fast interaction selection in high-dimensional linear regression models with two-way interaction effects under strong, weak, or no heredity condition. Ye, C.,and Yang,Y. (2019) <doi:10.1109/TIT.2019.2913417>.
This package provides functions to simplify and standardise antimicrobial resistance (AMR) data analysis and to work with microbial and antimicrobial properties by using evidence-based methods, as described in <doi:10.18637/jss.v104.i03>.
Semi-distributed Precipitation-Runoff Modeling based on airGR package models integrating human infrastructures and their managements.
Some functions for drawing some special plots: The function bagplot plots a bagplot, faces plots chernoff faces, iconplot plots a representation of a frequency table or a data matrix, plothulls plots hulls of a bivariate data set, plotsummary plots a graphical summary of a data set, puticon adds icons to a plot, skyline.hist combines several histograms of a one dimensional data set in one plot, slider functions supports some interactive graphics, spin3R helps an inspection of a 3-dim point cloud, stem.leaf plots a stem and leaf plot, stem.leaf.backback plots back-to-back versions of stem and leaf plot.
This package implements an innovative approach to community detection in social networks using Association Rules Learning. The package provides tools for processing graph and rules objects, generating association rules, and detecting communities based on node interactions. Designed to facilitate advanced research in Social Network Analysis, this package leverages association rules learning for enhanced community detection. This approach is described in El-Moussaoui et al. (2021) <doi:10.1007/978-3-030-66840-2_3>.
The active subspace method is a sensitivity analysis technique that finds important linear combinations of input variables for a simulator. This package provides functions allowing estimation of the active subspace without gradient information using Gaussian processes as well as sequential experimental design tools to minimize the amount of data required to do so. Implements Wycoff et al. (JCGS, 2021) <doi:10.48550/arXiv.1907.11572>.
Client package for the AWS Key Management Service <https://aws.amazon.com/kms/>, a cloud service for managing encryption keys.
Add-on to the airGR package which provides the tools to assimilate observed discharges in daily GR hydrological models. The package consists in two functions allowing to perform the assimilation of observed discharges via the Ensemble Kalman filter or the Particle filter as described in Piazzi et al. (2021) <doi:10.1029/2020WR028390>.
Runs projections of groups of matrix projection models (MPMs), allowing density dependence mechanisms to work across MPMs. This package was developed to run both adaptive dynamics simulations such as pairwise and multiple invasibility analyses, and community projections in which species are represented by MPMs. All forms of MPMs are allowed, including integral projection models (IPMs). Also includes individual-based modeling (IBM) versions of these.
This package provides a simple client for the Amazon Web Services ('AWS') Identity and Access Management ('IAM') API <https://aws.amazon.com/iam/>.
Build and train a variational autoencoder (VAE) for mixed-type tabular data (continuous, binary, categorical). Models are implemented using TensorFlow and Keras via the reticulate interface, enabling reproducible VAE training for heterogeneous tabular datasets.
Huber-type estimation for mean, covariance and (regularized) regression. For all the methods, the robustification parameter tau is chosen by a tuning-free principle.
This package contains functions to help create an Analysis Results Dataset. The dataset follows industry recommended structure. The dataset can be created in multiple passes, using different data frames as input. Analysis Results Datasets are used in the pharmaceutical and biotech industries to capture analysis in a common tabular data structure.
An implementation of the ALFAM2 dynamic emission model for ammonia volatilization from field-applied animal slurry (manure with dry matter below about 15%). The model can be used to predict cumulative emission and emission rate of ammonia following field application of slurry. Predictions may be useful for emission inventory calculations, fertilizer management, assessment of mitigation strategies, or research aimed at understanding ammonia emission. Default parameter sets include effects of application method, slurry composition, and weather. The model structure is based on a simplified representation of the physical-chemical slurry-soil-atmosphere system. More information is available via citation("ALFAM2").
This contains helpful functions for parsing, managing, plotting, and visualizing activities, most often from GPX (GPS Exchange Format) files recorded by GPS devices. It allows easy parsing of the source files into standard R data formats, along with functions to compute derived data for the activity, and to plot the activity in a variety of ways.
Analysis of dyadic network and relational data using additive and multiplicative effects (AME) models. The basic model includes regression terms, the covariance structure of the social relations model (Warner, Kenny and Stoto (1979) <DOI:10.1037/0022-3514.37.10.1742>, Wong (1982) <DOI:10.2307/2287296>), and multiplicative factor models (Hoff(2009) <DOI:10.1007/s10588-008-9040-4>). Several different link functions accommodate different relational data structures, including binary/network data, normal relational data, zero-inflated positive outcomes using a tobit model, ordinal relational data and data from fixed-rank nomination schemes. Several of these link functions are discussed in Hoff, Fosdick, Volfovsky and Stovel (2013) <DOI:10.1017/nws.2013.17>. Development of this software was supported in part by NIH grant R01HD067509.
Fit various smoothing spline models. Includes an ssr() function for smoothing spline regression, an nnr() function for nonparametric nonlinear regression, an snr() function for semiparametric nonlinear regression, an slm() function for semiparametric linear mixed-effects models, and an snm() function for semiparametric nonlinear mixed-effects models. See Wang (2011) <doi:10.1201/b10954> for an overview.
This package provides a novel interpretable machine learning-based framework to automate the development of a clinical scoring model for predefined outcomes. Our novel framework consists of six modules: variable ranking with machine learning, variable transformation, score derivation, model selection, domain knowledge-based score fine-tuning, and performance evaluation.The details are described in our research paper<doi:10.2196/21798>. Users or clinicians could seamlessly generate parsimonious sparse-score risk models (i.e., risk scores), which can be easily implemented and validated in clinical practice. We hope to see its application in various medical case studies.
This package provides the alpha-adjustment correction from "Benjamini, Y., & Hochberg, Y. (1995) <doi:10.1111/j.2517-6161.1995.tb02031.x> Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1), 289-300". For researchers interested in using the exact mathematical formulas and procedures as used in the original paper.
This package provides a project template to support the data science workflow.