Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computes relative importance of main and interaction effects. Also, sum of the modified generalized weights is computed. Ibrahim et al. (2022) <doi:10.1134/S1064229322080051>.
Systematic fit of hundreds of theoretical univariate distributions to empirical data via maximum likelihood estimation. Fits are reported and summarized by a data.frame, a csv file or a shiny app (here with additional features like visual representation of fits). All output formats provide assessment of goodness-of-fit by the following methods: Kolmogorov-Smirnov test, Shapiro-Wilks test, Anderson-Darling test.
This package provides functions for creating, analyzing, and visualizing event study models using fixed-effects regression. Supports staggered adoption, multiple confidence intervals, flexible clustering, and panel/time transformations in a simple workflow.
This package provides core functions and utilities for packages and other code developed by Jordan Mark Barbone.
Create fake datasets that can be used for prototyping and teaching. This package provides a set of functions to generate fake data for a variety of data types, such as dates, addresses, and names. It can be used for prototyping (notably in shiny') or as a tool to teach data manipulation and data visualization.
Integrated Functional Depth for Partially Observed Functional Data and applications to visualization, outlier detection and classification. It implements the methods proposed in: Elà as, A., Jiménez, R., Paganoni, A. M. and Sangalli, L. M., (2023), "Integrated Depth for Partially Observed Functional Data", Journal of Computational and Graphical Statistics, <doi:10.1080/10618600.2022.2070171>. Elà as, A., Jiménez, R., & Shang, H. L. (2023), "Depth-based reconstruction method for incomplete functional data", Computational Statistics, <doi:10.1007/s00180-022-01282-9>. Elà as, A., Nagy, S. (2024), "Statistical properties of partially observed integrated functional depths", TEST, <doi:10.1007/s11749-024-00954-6>.
Accompanies a paper (Barunik, Krehlik (2018) <doi:10.1093/jjfinec/nby001>) dedicated to spectral decomposition of connectedness measures and their interpretation. We implement all the developed estimators as well as the historical counterparts. For more information, see the help or GitHub page (<https://github.com/tomaskrehlik/frequencyConnectedness>) for relevant information.
Obtain Formula 1 data via the Jolpica API <https://jolpi.ca> and the unofficial API <https://www.formula1.com/en/timing/f1-live> via the fastf1 Python library <https://docs.fastf1.dev/>.
This package implements a very fast C++ algorithm to quickly bootstrap receiver operating characteristics (ROC) curves and derived performance metrics, including the area under the curve (AUC) and the partial area under the curve as well as the true and false positive rate. The analysis of paired receiver operating curves is supported as well, so that a comparison of two predictors is possible. You can also plot the results and calculate confidence intervals. On a typical desktop computer the time needed for the calculation of 100000 bootstrap replicates given 500 observations requires time on the order of magnitude of one second.
This package provides a quantile-quantile plot can be used to compare a sample of p-values to the uniform distribution. But when the dataset is big (i.e. > 1e4 p-values), plotting the quantile-quantile plot can be slow. geom_QQ uses all the data to calculate the quantiles, but thins it out in a way that focuses on points near zero before plotting to speed up plotting and decrease file size, when vector graphics are stored.
This package provides functions for drawing scene trees representing scenes that have been drawn using grid graphics.
This package provides a suite of custom R Markdown formats and templates for authoring web pages styled with the GOV.UK Design System.
Statistical methodology for sparse multivariate extreme value models. Methods are provided for exact simulation and statistical inference for multivariate Pareto distributions on graphical structures as described in the paper Graphical Models for Extremes by Engelke and Hitz (2020) <doi:10.1111/rssb.12355>.
Connecting spatiotemporal exposure to individual and population-level risk via source-to-outcome continuum modeling. The package, methods, and case-studies are described in Messier, Reif, and Marvel (2024) <doi:10.1101/2024.09.23.24314096> and Eccles et al. (2023) <doi:10.1016/j.scitotenv.2022.158905>.
The method focuses on a single environmental exposure and induces a main-effect-before-interaction hierarchical structure for the joint selection of interaction terms in a regularized regression model. For details see Zemlianskaia et al. (2021) <arxiv:2103.13510>.
This package provides a collection of sampling formulas for the unified neutral model of biogeography and biodiversity. Alongside the sampling formulas, it includes methods to perform maximum likelihood optimization of the sampling formulas, methods to generate data given the neutral model, and methods to estimate the expected species abundance distribution. Sampling formulas included in the GUILDS package are the Etienne Sampling Formula (Etienne 2005), the guild sampling formula, where guilds are assumed to differ in dispersal ability (Janzen et al. 2015), and the guilds sampling formula conditioned on guild size (Janzen et al. 2015).
Assists in the plotting and functional smoothing of traits measured over time and the extraction of features from these traits, implementing the SET (Smoothing and Extraction of Traits) method described in Brien et al. (2020) Plant Methods, 16. Smoothing of growth trends for individual plants using natural cubic smoothing splines or P-splines is available for removing transient effects and segmented smoothing is available to deal with discontinuities in growth trends. There are graphical tools for assessing the adequacy of trait smoothing, both when using this and other packages, such as those that fit nonlinear growth models. A range of per-unit (plant, pot, plot) growth traits or features can be extracted from the data, including single time points, interval growth rates and other growth statistics, such as maximum growth or days to maximum growth. The package also has tools adapted to inputting data from high-throughput phenotyping facilities, such from a Lemna-Tec Scananalyzer 3D (see <https://www.youtube.com/watch?v=MRAF_mAEa7E/> for more information). The package growthPheno can also be installed from <http://chris.brien.name/rpackages/>.
This package provides a function that reads in the GEO code of a gene expression dataset, retrieves its data from GEO, (optionally) retrieves the gene symbols of the dataset, and returns a simple dataframe table containing all the data. Platforms available: GPL11532, GPL23126, GPL6244, GPL8300, GPL80, GPL96, GPL570, GPL571, GPL20115, GPL1293, GPL6102, GPL6104, GPL6883, GPL6884, GPL13497, GPL14550, GPL17077, GPL6480. GEO: Gene Expression Omnibus. ID: identifier code. The GEO datasets are downloaded from the URL <https://ftp.ncbi.nlm.nih.gov/geo/series/>. More information can be found in the following manuscript: Davide Chicco, "geneExpressionFromGEO: an R package to facilitate data reading from Gene Expression Omnibus (GEO)". Microarray Data Analysis, Methods in Molecular Biology, volume 2401, chapter 12, pages 187-194, Springer Protocols, 2021, <doi:10.1007/978-1-0716-1839-4_12>.
Basic functions for plotting 2D and 3D views of a sphere, by default the Earth with its major coastline, and additional lines and points.
Wrappers for functions in the gRain package to emulate some RHugin functionality, allowing the building of Bayesian networks consisting on discrete chance nodes incrementally, through adding nodes, edges and conditional probability tables, the setting of evidence, both hard (boolean) or soft (likelihoods), querying marginal probabilities and normalizing constants, and generating sets of high-probability configurations. Computations will typically not be so fast as they are with RHugin', but this package should assist users without access to Hugin to use code written to use RHugin'.
Offers functions for the comparison of Gutenberg-Richter b-values. Several functions in GRTo are helpful for the assessment of the quality of seismicity catalogs.
Fit a regression model for when the response variable is presented as a ratio or proportion. This adjustment can occur globally, with the same estimate for the entire study space, or locally, where a beta regression model is fitted for each region, considering only influential locations for that area. Da Silva, A. R. and Lima, A. O. (2017) <doi:10.1016/j.spasta.2017.07.011>.
Causal mediation analysis for a single exposure/treatment and a single mediator, both allowed to be either continuous or binary. The package implements the difference method and provides point and interval estimates as well as testing for the natural direct and indirect effects and the mediation proportion. Nevo, Xiao and Spiegelman (2017) <doi:10.1515/ijb-2017-0006>.
This package performs Geometrical Archetypal Analysis after creating Grid Archetypes which are the Cartesian Product of all minimum, maximum variable values. Since the archetypes are fixed now, we have the ability to compute the convex composition coefficients for all our available data points much faster by using the half part of Principal Convex Hull Archetypal method. Additionally we can decide to keep as archetypes the closer to the Grid Archetypes ones. Finally the number of archetypes is always 2 to the power of the dimension of our data points if we consider them as a vector space. Cutler, A., Breiman, L. (1994) <doi:10.1080/00401706.1994.10485840>. Morup, M., Hansen, LK. (2012) <doi:10.1016/j.neucom.2011.06.033>. Christopoulos, DT. (2024) <doi:10.13140/RG.2.2.14030.88642>.