Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
FDR functions for permutation-based estimators, including pi0 as well as FDR confidence intervals. The confidence intervals account for dependencies between tests by the incorporation of an overdispersion parameter, which is estimated from the permuted data. Also included are options for an analog parametric approach.
This package provides a comprehensive framework in R for modeling and forecasting economic scenarios based on multi-level dynamic factor model. The package enables users to: (i) extract global and group-specific factors using a flexible multi-level factor structure; (ii) compute asymptotically valid confidence regions for the estimated factors, accounting for uncertainty in the factor loadings; (iii) obtain estimates of the parameters of the factor-augmented quantile regressions together with their standard deviations; (iv) recover full predictive conditional densities from estimated quantiles; (v) obtain risk measures based on extreme quantiles of the conditional densities; (vi) estimate the conditional density and the corresponding extreme quantiles when the factors are stressed.
This package provides functions for range estimation in birds based on Pennycuick (2008) and Pennycuick (1975), Flight program which compliments Pennycuick (2008) requires manual entry of birds which can be tedious when there are thousands of birds to estimate. Implemented are two ODE methods discussed in Pennycuick (1975) and time-marching computation method "constant muscle mass" as in Pennycuick (1998). See Pennycuick (1975, ISBN:978-0-12-249405-5), Pennycuick (1998) <doi:10.1006/jtbi.1997.0572>, and Pennycuick (2008, ISBN:9780080557816).
Fast, numerically robust computation of weighted moments via Rcpp'. Supports computation on vectors and matrices, and Monoidal append of moments. Moments and cumulants over running fixed length windows can be computed, as well as over time-based windows. Moment computations are via a generalization of Welford's method, as described by Bennett et. (2009) <doi:10.1109/CLUSTR.2009.5289161>.
Datasets for teaching quantitative approaches and modeling in archaeology and paleontology. This package provides several types of data related to broad topics (cultural evolution, radiocarbon dating, paleoenvironments, etc.), which can be used to illustrate statistical methods in the classroom (multivariate data analysis, compositional data analysis, diversity measurement, etc.).
This package provides a generative art system for producing tree-like images using an L-system to create the structures. The package includes tools for generating the data structures and visualise them in a variety of styles.
Supports teaching methods of estimating and testing time series factor models for use in robust portfolio construction and analysis. Unique in providing not only classical least squares, but also modern robust model fitting methods which are not much influenced by outliers. Includes returns and risk decompositions, with user choice of standard deviation, value-at-risk, and expected shortfall risk measures. "Robust Statistics Theory and Methods (with R)", R. A. Maronna, R. D. Martin, V. J. Yohai, M. Salibian-Barrera (2019) <doi:10.1002/9781119214656>.
This is a method for Allele-specific DNA Copy Number Profiling using Next-Generation Sequencing. Given the allele-specific coverage at the variant loci, this program segments the genome into regions of homogeneous allele-specific copy number. It requires, as input, the read counts for each variant allele in a pair of case and control samples. For detection of somatic mutations, the case and control samples can be the tumor and normal sample from the same individual.
This package provides methods to compute simultaneous prediction and confidence bands for dense time series data. The implementation builds on the functional bootstrap approach proposed by Lenhoff et al. (1999) <doi:10.1016/S0966-6362(98)00043-5> and extended by Koska et al. (2023) <doi:10.1016/j.jbiomech.2023.111506> to support both independent and clustered (hierarchical) data. Includes a simple API (see band()) and an Rcpp backend for performance.
This package provides a set of simplified functions for creating funnel plots for proportion data. This package supports user defined benchmarks, confidence limits and estimation methods (i.e. exact or approximate) based on Spiegelhalter (2005) <doi:10.1002/sim.1970>. Additional routines for returning scored unit level data according to a set of specifications is also implemented for convenience. Specifically, both a categorical and a continuous score variable is returned to the sample data frame, which identifies which observations are deemed extreme or in control. Typically, such variables are useful as stratifications or covariates in further exploratory analyses. Lastly, the plotting routine returns a base funnel plot ('ggplot2'), which can also be tailored.
For binomial outcome data Alternate Binomial Distributions and Binomial Mixture Distributions are fitted when overdispersion is available.
An implementation of maximum simulated likelihood method for the estimation of multinomial logit models with random coefficients as presented by Sarrias and Daziano (2017) <doi:10.18637/jss.v079.i02>. Specifically, it allows estimating models with continuous heterogeneity such as the mixed multinomial logit and the generalized multinomial logit. It also allows estimating models with discrete heterogeneity such as the latent class and the mixed-mixed multinomial logit model.
This package provides functions are provided for quantifying evolution and selection on complex traits. The package implements effective handling and analysis algorithms scaled for genome-wide data and calculates a composite statistic, denoted Ghat, which is used to test for selection on a trait. The package provides a number of simple examples for handling and analysing the genome data and visualising the output and results. Beissinger et al., (2018) <doi:10.1534/genetics.118.300857>.
This package provides a network-based gene weighting algorithm for pathway enrichment analysis, using either RNA-seq or microarray data. Zhaoyuan Fang, Weidong Tian and Hongbin Ji (2012) <doi:10.1038/cr.2011.149>.
Generates a file, containing the main scientific references, prepared to be automatically inserted into an academic paper. The articles present in the list are chosen from the main references generated, by function principal_lister(), of the package bibliorefer'. The generated file contains the list of metadata of the principal references in BibTex format. Massimo Aria, Corrado Cuccurullo. (2017) <doi:10.1016/j.joi.2017.08.007>. Caibo Zhou, Wenyan Song. (2021) <doi:10.1016/j.jclepro.2021.126943>. Hamid DerviÅ . (2019) <doi:10.5530/jscires.8.3.32>.
We implement various classical tests for the composite hypothesis of testing the fit to the family of gamma distributions as the Kolmogorov-Smirnov test, the Cramer-von Mises test, the Anderson Darling test and the Watson test. For each test a parametric bootstrap procedure is implemented, as considered in Henze, Meintanis & Ebner (2012) <doi:10.1080/03610926.2010.542851>. The recent procedures presented in Henze, Meintanis & Ebner (2012) <doi:10.1080/03610926.2010.542851> and Betsch & Ebner (2019) <doi:10.1007/s00184-019-00708-7> are implemented. Estimation of parameters of the gamma law are implemented using the method of Bhattacharya (2001) <doi:10.1080/00949650108812100>.
Estimation of generalized linear models with correlated/clustered observations by use of generalized estimating equations (GEE). See e.g. Halekoh and Højsgaard, (2005, <doi:10.18637/jss.v015.i02>), for details. Several types of clustering are supported, including exchangeable variance structures, AR1 structures, M-dependent, user-specified variance structures and more. The model fitting computations are performed using modified code from the geeM package, while the interface and output objects have been written to resemble the geepack package. The package also contains additional tools for working with and inspecting results from the geepack package, e.g. a confint method for geeglm objects from geepack'.
Currently provides geom_balance_of_trade(), a ggplot2 layer that fills the area between exports and imports series (with automatic crossing detection and conditional coloring for surplus vs. deficit), and overlays lines and points by default.
Selected utilities, in particular geoms and stats functions, extending the ggplot2 package. This package imports functions from EnvStats <doi:10.1007/978-1-4614-8456-1> by Millard (2013), ggpp <https://CRAN.R-project.org/package=ggpp> by Aphalo et al. (2023) and ggstats <doi:10.5281/zenodo.10183964> by Larmarange (2023), and then exports them. This package also contains modified code from ggquickeda <https://CRAN.R-project.org/package=ggquickeda> by Mouksassi et al. (2023) for Kaplan-Meier lines and ticks additions to plots. All functions are tested to make sure that they work reliably.
This is a dataset package for GANPA, which implements a network-based gene weighting approach to pathway analysis. This package includes data useful for GANPA, such as a functional association network, pathways, an expression dataset and multi-subunit proteins.
Turn arbitrary functions into binary operators.
This package provides functions for rendering Bezier curves (Pomax, 2018) <https://pomax.github.io/bezierinfo/> in grid'. There is support for both quadratic and cubic Bezier curves. There are also functions for calculating points on curves, tangents to curves, and normals to curves.
Multi-threaded GIF encoder written in Rust: <https://gif.ski/>. Converts images to GIF animations using pngquant's efficient cross-frame palettes and temporal dithering with thousands of colors per frame.
This package provides a data visualization design that provides comparison between two (Double) data sources (usually on a par with each other) on one reformed heatmap, while inheriting ggplot2 features.