Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Functional denoising and functional ANOVA through wavelet-domain Markov groves. Fore more details see: Ma L. and Soriano J. (2018) Efficient functional ANOVA through wavelet-domain Markov groves. <arXiv:1602.03990v2 [stat.ME]>.
Fits generalized additive models for the location, scale and shape parameters of a generalized extreme value response distribution. The methodology is based on Rigby, R.A. and Stasinopoulos, D.M. (2005), <doi:10.1111/j.1467-9876.2005.00510.x> and implemented using functions from the gamlss package <doi:10.32614/CRAN.package.gamlss>.
API bindings to the Geospatial Data Abstraction Library ('GDAL', <https://gdal.org>). Implements the GDAL Raster and Vector Data Models. Bindings are implemented with Rcpp modules. Exposed C++ classes and stand-alone functions wrap much of the GDAL API and provide additional functionality. Calling signatures resemble the native C, C++ and Python APIs provided by the GDAL project. Class GDALRaster encapsulates a GDALDataset and its raster band objects. Class GDALVector encapsulates an OGRLayer and the GDALDataset that contains it. Initial bindings are provided to the unified gdal command line interface added in GDAL 3.11. C++ stand-alone functions provide bindings to most GDAL "traditional" raster and vector utilities, including OGR facilities for vector geoprocessing, several algorithms, as well as the Geometry API ('GEOS via GDAL headers), the Spatial Reference Systems API, and methods for coordinate transformation. Bindings to the Virtual Systems Interface ('VSI') API implement standard file system operations abstracted for URLs, cloud storage services, Zip'/'GZip'/'7z'/'RAR', in-memory files, as well as regular local file systems. This provides a single interface for operating on file system objects that works the same for any storage backend. A custom raster calculator evaluates a user-defined R expression on a layer or stack of layers, with pixel x/y available as variables in the expression. Raster combine() identifies and counts unique pixel combinations across multiple input layers, with optional raster output of the pixel-level combination IDs. Basic plotting capability is provided for raster and vector display. gdalraster leans toward minimalism and the use of simple, lightweight objects for holding raw data. Currently, only minimal S3 class interfaces have been implemented for selected R objects that contain spatial data. gdalraster may be useful in applications that need scalable, low-level I/O, or prefer a direct GDAL API.
Computes the test statistic and p-value of the Cramer-von Mises and Anderson-Darling test for some continuous distribution functions proposed by Chen and Balakrishnan (1995) <http://asq.org/qic/display-item/index.html?item=11407>. In addition to our classic distribution functions here, we calculate the Goodness of Fit (GoF) test to dataset which follows the extreme value distribution function, without remembering the formula of distribution/density functions. Calculates the Value at Risk (VaR) and Average VaR are another important risk factors which are estimated by using well-known distribution functions. Pflug and Romisch (2007, ISBN: 9812707409) is a good reference to study the properties of risk measures.
This package provides a simple and flexible tool designed to create enriched figures and tables by providing a way to add text around them through predefined or custom layouts. Any input which is convertible to grob is supported, like ggplot', gt or flextable'. Based on R grid graphics, for more details see Paul Murrell (2018) <doi:10.1201/9780429422768>.
This package provides methods for dividing data into groups. Create balanced partitions and cross-validation folds. Perform time series windowing and general grouping and splitting of data. Balance existing groups with up- and downsampling or collapse them to fewer groups.
Robust regression via gamma-divergence with L1, elastic net and ridge.
This package implements the non-iterative conditional expectation (NICE) algorithm of the g-formula algorithm (Robins (1986) <doi:10.1016/0270-0255(86)90088-6>, Hernán and Robins (2024, ISBN:9781420076165)). The g-formula can estimate an outcome's counterfactual mean or risk under hypothetical treatment strategies (interventions) when there is sufficient information on time-varying treatments and confounders. This package can be used for discrete or continuous time-varying treatments and for failure time outcomes or continuous/binary end of follow-up outcomes. The package can handle a random measurement/visit process and a priori knowledge of the data structure, as well as censoring (e.g., by loss to follow-up) and two options for handling competing events for failure time outcomes. Interventions can be flexibly specified, both as interventions on a single treatment or as joint interventions on multiple treatments. See McGrath et al. (2020) <doi:10.1016/j.patter.2020.100008> for a guide on how to use the package.
Geographical detectors for measuring spatial stratified heterogeneity, as described in Jinfeng Wang (2010) <doi:10.1080/13658810802443457> and Jinfeng Wang (2016) <doi:10.1016/j.ecolind.2016.02.052>. Includes the optimal discretization of continuous data, four primary functions of geographical detectors, comparison of size effects of spatial unit and the visualizations of results. To use the package and to refer the descriptions of the package, methods and case datasets, please cite Yongze Song (2020) <doi:10.1080/15481603.2020.1760434>. The model has been applied in factor exploration of road performance and multi-scale spatial segmentation for network data, as described in Yongze Song (2018) <doi:10.3390/rs10111696> and Yongze Song (2020) <doi:10.1109/TITS.2020.3001193>, respectively.
This package provides tools to download data from the GISCO (Geographic Information System of the Commission) Eurostat database <https://ec.europa.eu/eurostat/web/gisco>. Global and European map data available. This package is in no way officially related to or endorsed by Eurostat.
This package provides a collection of custom ggplot2'-based visualizations for data exploration and analysis. Each function handles data preprocessing and returns a object that can be further customized using standard ggplot2 syntax.
Multiple comparison procedures (MCPs) control the familywise error rate in clinical trials. Graphical MCPs include many commonly used procedures as special cases; see Bretz et al. (2011) <doi:10.1002/bimj.201000239>, Lu (2016) <doi:10.1002/sim.6985>, and Xi et al. (2017) <doi:10.1002/bimj.201600233>. This package is a low-dependency implementation of graphical MCPs which allow mixed types of tests. It also includes power simulations and visualization of graphical MCPs.
This package implements the Generalized Method of Wavelet Moments with Exogenous Inputs estimator (GMWMX) presented in Voirol, L., Xu, H., Zhang, Y., Insolia, L., Molinari, R. and Guerrier, S. (2024) <doi:10.48550/arXiv.2409.05160>. The GMWMX estimator allows to estimate functional and stochastic parameters of linear models with correlated residuals in presence of missing data. The gmwmx2 package provides functions to load and plot Global Navigation Satellite System (GNSS) data from the Nevada Geodetic Laboratory and functions to estimate linear model model with correlated residuals in presence of missing data.
This package creates presentation-ready tables summarizing data sets, regression models, and more. The code to create the tables is concise and highly customizable. Data frames can be summarized with any function, e.g. mean(), median(), even user-written functions. Regression models are summarized and include the reference rows for categorical variables. Common regression models, such as logistic regression and Cox proportional hazards regression, are automatically identified and the tables are pre-filled with appropriate column headers.
Firstly, both functions of the univariate Poisson dispersion index (DI) for count data and the univariate exponential variation index (VI) for nonnegative continuous data are performed. Next, other functions of univariate indexes such the binomial dispersion index (DIb), the negative binomial dispersion index (DInb) and the inverse Gaussian variation index (VIiG) are given. Finally, we are computed some multivariate versions of these functions such that the generalized dispersion index (GDI) with its marginal one (MDI) and the generalized variation index (GVI) with its marginal one (MVI) too.
This package performs end-to-end analysis of gene clustersâ such as photosynthesis, carbon/nitrogen/sulfur cycling, carotenoid, antibiotic, or viral marker genes (e.g., capsid, polymerase, integrase)â from genomes and metagenomes. It parses Basic Local Alignment Search Tool (BLAST) results in tab-delimited format produced by tools like NCBI BLAST+ and Diamond BLASTp, filters Open Reading Frames (ORFs) by length, detects contiguous clusters of reference genes, optionally extracts genomic coordinates, merges functional annotations, and generates publication-ready arrow plots. The package works seamlessly with or without the coding sequences input and skips plotting when no functional groups are found. For more details see Li et al. (2023) <doi:10.1038/s41467-023-42193-7>.
This package implements the Rank In Similarity Graph Edge-count two-sample test (RISE) for high-dimensional and non-Euclidean data. The method constructs similarity-based graphs, such as k-nearest neighbor graph (k-NNG), k-minimum spanning tree (k-MST), and k-minimum distance non-bipartite pairing (k-MDP), and evaluates rank-based within-sample edge counts with asymptotic and permutation p-values. For methodological details, see Zhou and Chen (2023) <https://proceedings.mlr.press/v195/zhou23a.html>.
Comparing two independent or paired groups across a range of descriptive statistics, enabling the evaluation of potential differences in central tendency (mean, median), dispersion (variance, interquartile range), shape (skewness, kurtosis), and distributional characteristics (various quantiles). The analytical framework incorporates parametric t-tests, non-parametric Wilcoxon tests, permutation tests, and bootstrap resampling techniques to assess the statistical significance of observed differences.
This package provides ggplot2 equivalents of fixest::coefplot() and fixest::iplot(), for producing nice coefficient plots and interaction plots. Enables some additional functionality and convenience features, including grouped multi-'fixest object faceting and programmatic updates to existing plots (e.g., themes and aesthetics).
Allows you to retrieve information from the Google Knowledge Graph API <https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html> and process it in R in various forms. The Knowledge Graph Search API lets you find entities in the Google Knowledge Graph'. The API uses standard schema.org types and is compliant with the JSON-LD specification.
Add glossaries to markdown and quarto documents by tagging individual words. Definitions can be provided inline or in a separate file.
Promote access to the GESLA <https://gesla787883612.wordpress.com> (Global Extreme Sea Level Analysis) dataset, a higher-frequency sea-level record data from all over the world. It provides functions to download it entirely, or query subsets directly into R, without the need of downloading the full dataset. Also, it provides a built-in web-application, so that users can apply basic filters to select the data of interest, generating informative plots, and showing the selected sites.
Density function and generation of random variables from the Generalized Inverse Normal (GIN) distribution from Robert (1991) <doi:10.1016/0167-7152(91)90174-P>. Also provides density functions and generation from the GIN distribution truncated to positive or negative reals. Theoretical guarantees supporting the sampling algorithms and an application to Bayesian estimation of network formation models can be found in the working paper Ding, Estrada and Montoya-Blandón (2023) <https://www.smontoyablandon.com/publication/networks/network_externalities.pdf>.
An R package that allows for combining tree-boosting with Gaussian process and mixed effects models. It also allows for independently doing tree-boosting as well as inference and prediction for Gaussian process and mixed effects models. See <https://github.com/fabsig/GPBoost> for more information on the software and Sigrist (2022, JMLR) <https://www.jmlr.org/papers/v23/20-322.html> and Sigrist (2023, TPAMI) <doi:10.1109/TPAMI.2022.3168152> for more information on the methodology.