Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Ranked Set Sampling (RSS) is a stratified sampling method known for its efficiency compared to Simple Random Sampling (SRS). When sample allocation is equal across strata, it is referred to as balanced RSS (BRSS) whereas unequal allocation is called unbalanced RSS (URSS), which is particularly effective for asymmetric or skewed distributions. This package offers practical statistical tools and sampling methods for both BRSS and URSS, emphasizing flexible sampling designs and inference for population means, medians, proportions, and Area Under the Curve (AUC). It incorporates parametric and nonparametric tests, including empirical likelihood ratio (LR) methods. The package provides ranked set sampling methods from a given population, including sampling with imperfect ranking using auxiliary variables. Furthermore, it provides tools for efficient sample allocation in URSS, ensuring greater efficiency than SRS and BRSS. For more details, refer e.g. to Chen et al. (2003) <doi:10.1007/978-0-387-21664-5>, Ahn et al. (2022) <doi:10.1007/978-3-031-14525-4_3>, and Ahn et al. (2024) <doi:10.1111/insr.12589>.
Routines for fitting various joint (and univariate) regression models, with several types of covariate effects, in the presence of equations errors association.
Builds a LASSO, Ridge, or Elastic Net model with glmnet or cv.glmnet with bootstrap inference statistics (SE, CI, and p-value) for selected coefficients with no shrinkage applied for them. Model performance can be evaluated on test data and an automated alpha selection is implemented for Elastic Net. Parallelized computation is used to speed up the process. The methods are described in Friedman et al. (2010) <doi:10.18637/jss.v033.i01> and Simon et al. (2011) <doi:10.18637/jss.v039.i05>.
This package provides a novel PRS model is introduced to enhance the prediction accuracy by utilising GxE effects. This package performs Genome Wide Association Studies (GWAS) and Genome Wide Environment Interaction Studies (GWEIS) using a discovery dataset. The package has the ability to obtain polygenic risk scores (PRSs) for a target sample. Finally it predicts the risk values of each individual in the target sample. Users have the choice of using existing models (Li et al., 2015) <doi:10.1093/annonc/mdu565>, (Pandis et al., 2013) <doi:10.1093/ejo/cjt054>, (Peyrot et al., 2018) <doi:10.1016/j.biopsych.2017.09.009> and (Song et al., 2022) <doi:10.1038/s41467-022-32407-9>, as well as newly proposed models for genomic risk prediction (refer to the URL for more details).
Using mixed effects models to analyse longitudinal gene expression can highlight differences between sample groups over time. The most widely used differential gene expression tools are unable to fit linear mixed effect models, and are less optimal for analysing longitudinal data. This package provides negative binomial and Gaussian mixed effects models to fit gene expression and other biological data across repeated samples. This is particularly useful for investigating changes in RNA-Sequencing gene expression between groups of individuals over time, as described in: Rivellese, F., Surace, A. E., Goldmann, K., Sciacca, E., Cubuk, C., Giorli, G., ... Lewis, M. J., & Pitzalis, C. (2022) Nature medicine <doi:10.1038/s41591-022-01789-0>.
Numerical integration with Gram polynomials (based on <arXiv:2106.14875> [math.NA] 28 Jun 2021, by Irfan Muhammad [School of Computer Science, University of Birmingham, UK]).
This package provides functions to estimate the parameters of the generalized Poisson distribution with or without covariates using maximum likelihood. The references include Nikoloulopoulos A.K. & Karlis D. (2008). "On modeling count data: a comparison of some well-known discrete distributions". Journal of Statistical Computation and Simulation, 78(3): 437--457, <doi:10.1080/10629360601010760> and Consul P.C. & Famoye F. (1992). "Generalized Poisson regression model". Communications in Statistics - Theory and Methods, 21(1): 89--109, <doi:10.1080/03610929208830766>.
Moon charts are like pie charts except that the proportions are shown as crescent or gibbous portions of a circle, like the lit and unlit portions of the moon. As such, they work best with only one or two groups. gggibbous extends ggplot2 to allow for plotting multiple moon charts in a single panel and does not require a square coordinate system.
This package provides residual global fit indices for generalized latent variable models.
Realize three approaches for Gene-Environment interaction analysis. All of them adopt Sparse Group Minimax Concave Penalty to identify important G variables and G-E interactions, and simultaneously respect the hierarchy between main G and G-E interaction effects. All the three approaches are available for Linear, Logistic, and Poisson regression. Also realize to mine and construct prior information for G variables and G-E interactions.
This package provides a template for a geometallurgical database and a fast and easy interface for accessing it.
Guild AI is an open-source tool for managing machine learning experiments. It's for scientists, engineers, and researchers who want to run scripts, compare results, measure progress, and automate machine learning workflow. Guild AI is a light weight, external tool that runs locally. It works with any framework, doesn't require any changes to your code, or access to any web services. Users can easily record experiment metadata, track model changes, manage experiment artifacts, tune hyperparameters, and share results. Guild AI combines features from Git', SQLite', and Make to provide a lab notebook for machine learning.
Computation of Quantitative Trait Loci hits in the selected gene set. Performing gene set validation with Quantitative Trait Loci information. Performing gene set enrichment analysis with available Quantitative Trait Loci data and computation of statistical significance value from gene set analysis. Obtaining the list of Quantitative Trait Loci hit genes along with their overlapped Quantitative Trait Loci names.
This package provides methods to analyse experimental agriculture data, from data synthesis to model selection and visualisation. The package is named after W.S. Gosset aka â Studentâ , a pioneer of modern statistics in small sample experimental design and analysis.
Symbolic calculation (addition or multiplication) and evaluation of multivariate polynomials with rational coefficients.
Utilities to cost and evaluate Australian tax policy, including fast projections of personal income tax collections, high-performance tax and transfer calculators, and an interface to common indices from the Australian Bureau of Statistics. Written to support Grattan Institute's Australian Perspectives program, and related projects. Access to the Australian Taxation Office's sample files of personal income tax returns is assumed.
The geohabnet package is designed to perform a geographically or spatially explicit risk analysis of habitat connectivity. Xing et al (2021) <doi:10.1093/biosci/biaa067> proposed the concept of cropland connectivity as a risk factor for plant pathogen or pest invasions. As the functions in geohabnet were initially developed thinking on cropland connectivity, users are recommended to first be familiar with the concept by looking at the Xing et al paper. In a nutshell, a habitat connectivity analysis combines information from maps of host density, estimates the relative likelihood of pathogen movement between habitat locations in the area of interest, and applies network analysis to calculate the connectivity of habitat locations. The functions of geohabnet are built to conduct a habitat connectivity analysis relying on geographic parameters (spatial resolution and spatial extent), dispersal parameters (in two commonly used dispersal kernels: inverse power law and negative exponential models), and network parameters (link weight thresholds and network metrics). The functionality and main extensions provided by the functions in geohabnet to habitat connectivity analysis are a) Capability to easily calculate the connectivity of locations in a landscape using a single function, such as sensitivity_analysis() or msean(). b) As backbone datasets, the geohabnet package supports the use of two publicly available global datasets to calculate cropland density. The backbone datasets in the geohabnet package include crop distribution maps from Monfreda, C., N. Ramankutty, and J. A. Foley (2008) <doi:10.1029/2007gb002947> "Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Global Biogeochem. Cycles, 22, GB1022" and International Food Policy Research Institute (2019) <doi:10.7910/DVN/PRFF8V> "Global Spatially-Disaggregated Crop Production Statistics Data for 2010 Version 2.0, Harvard Dataverse, V4". Users can also provide any other geographic dataset that represents host density. c) Because the geohabnet package allows R users to provide maps of host density (as originally in Xing et al (2021)), host landscape density (representing the geographic distribution of either crops or wild species), or habitat distribution (such as host landscape density adjusted by climate suitability) as inputs, we propose the term habitat connectivity. d) The geohabnet package allows R users to customize parameter values in the habitat connectivity analysis, facilitating context-specific (pathogen- or pest-specific) analyses. e) The geohabnet package allows users to automatically visualize maps of the habitat connectivity of locations resulting from a sensitivity analysis across all customized parameter combinations. The primary functions are msean() and sensitivity analysis(). Most functions in geohabnet provide three main outcomes: i) A map of mean habitat connectivity across parameters selected by the user, ii) a map of variance of habitat connectivity across the selected parameters, and iii) a map of the difference between the ranks of habitat connectivity and habitat density. Each function can be used to generate these maps as final outcomes. Each function can also provide intermediate outcomes, such as the adjacency matrices built to perform the analysis, which can be used in other network analysis. Refer to article at <https://garrettlab.github.io/HabitatConnectivity/articles/analysis.html> to see examples of each function and how to access each of these outcome types. To change parameter values, the file called parameters.yaml stores the parameters and their values, can be accessed using get_parameters() and set new parameter values with set_parameters()'. Users can modify up to ten parameters.
Generalized meta-analysis is a technique for estimating parameters associated with a multiple regression model through meta-analysis of studies which may have information only on partial sets of the regressors. It estimates the effects of each variable while fully adjusting for all other variables that are measured in at least one of the studies. Using algebraic relationships between regression parameters in different dimensions, a set of moment equations is specified for estimating the parameters of a maximal model through information available on sets of parameter estimates from a series of reduced models available from the different studies. The specification of the equations requires a reference dataset to estimate the joint distribution of the covariates. These equations are solved using the generalized method of moments approach, with the optimal weighting of the equations taking into account uncertainty associated with estimates of the parameters of the reduced models. The proposed framework is implemented using iterated reweighted least squares algorithm for fitting generalized linear regression models. For more details about the method, please see pre-print version of the manuscript on generalized meta-analysis by Prosenjit Kundu, Runlong Tang and Nilanjan Chatterjee (2018) <doi:10.1093/biomet/asz030>.The current version (0.2.0) is updated to address some of the stability issues in the previous version (0.1).
General P-splines are non-uniform B-splines penalized by a general difference penalty, proposed by Li and Cao (2022) <arXiv:2201.06808>. Constructible on arbitrary knots, they extend the standard P-splines of Eilers and Marx (1996) <doi:10.1214/ss/1038425655>. They are also related to the O-splines of O'Sullivan (1986) <doi:10.1214/ss/1177013525> via a sandwich formula that links a general difference penalty to a derivative penalty. The package includes routines for setting up and handling difference and derivative penalties. It also fits P-splines and O-splines to (x, y) data (optionally weighted) for a grid of smoothing parameter values in the automatic search intervals of Li and Cao (2023) <doi:10.1007/s11222-022-10178-z>. It aims to facilitate other packages to implement P-splines or O-splines as a smoothing tool in their model estimation framework.
This package provides a gradient descent algorithm to find a geodesic relationship between real-valued independent variables and a manifold-valued dependent variable (i.e. geodesic regression). Available manifolds are Euclidean space, the sphere, hyperbolic space, and Kendall's 2-dimensional shape space. Besides the standard least-squares loss, the least absolute deviations, Huber, and Tukey biweight loss functions can also be used to perform robust geodesic regression. Functions to help choose appropriate cutoff parameters to maintain high efficiency for the Huber and Tukey biweight estimators are included, as are functions for generating random tangent vectors from the Riemannian normal distributions on the sphere and hyperbolic space. The n-sphere is a n-dimensional manifold: we represent it as a sphere of radius 1 and center 0 embedded in (n+1)-dimensional space. Using the hyperboloid model of hyperbolic space, n-dimensional hyperbolic space is embedded in (n+1)-dimensional Minkowski space as the upper sheet of a hyperboloid of two sheets. Kendall's 2D shape space with K landmarks is of real dimension 2K-4; preshapes are represented as complex K-vectors with mean 0 and magnitude 1. Details are described in Shin, H.-Y. and Oh, H.-S. (2020) <arXiv:2007.04518>. Also see Fletcher, P. T. (2013) <doi:10.1007/s11263-012-0591-y>.
Implementation of routines of the author's PhD thesis on gradient-free Gradient Boosting (Werner, Tino (2020) "Gradient-Free Gradient Boosting", URL <https://oops.uni-oldenburg.de/id/eprint/4290>').
Extra geoms and scales for ggplot2', including geom_cloud(), a Normal density cloud replacement for errorbars; transforms ssqrt_trans and pseudolog10_trans, which are loglike but appropriate for negative data; interp_trans() and warp_trans() which provide scale transforms based on interpolation; and an infix compose operator for scale transforms.
An implementation of the International Bureau of Weights and Measures (BIPM) generalized consensus estimators used to assign the reference value in a key comparison exercise. This can also be applied to any interlaboratory study. Given a set of different sources, primary laboratories or measurement methods this package provides an evaluation of the variance components according to the selected statistical method for consensus building. It also implements the comparison among different consensus builders and evaluates the participating method or sources against the consensus reference value. Based on a diverse set of references, DerSimonian-Laird (1986) <doi:10.1016/0197-2456(86)90046-2>, for a complete list of references look at the reference section in the package documentation.
Spline regression, generalized additive models and component-wise gradient boosting utilizing geometrically designed (GeD) splines. GeDS regression is a non-parametric method inspired by geometric principles, for fitting spline regression models with variable knots in one or two independent variables. It efficiently estimates the number of knots and their positions, as well as the spline order, assuming the response variable follows a distribution from the exponential family. GeDS models integrate the broader category of generalized (non-)linear models, offering a flexible approach to model complex relationships. A description of the method can be found in Kaishev et al. (2016) <doi:10.1007/s00180-015-0621-7> and Dimitrova et al. (2023) <doi:10.1016/j.amc.2022.127493>. Further extending its capabilities, GeDS's implementation includes generalized additive models (GAM) and functional gradient boosting (FGB), enabling versatile multivariate predictor modeling, as discussed in the forthcoming work of Dimitrova et al. (2025).