Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements the G-Formula method for causal inference with time-varying treatments and confounders using Bayesian multiple imputation methods, as described by Bartlett et al (2025) <doi:10.1177/09622802251316971>. It creates multiple synthetic imputed datasets under treatment regimes of interest using the mice package. These can then be analysed using rules developed for analysing multiple synthetic datasets.
This package provides algorithms for detection of spatial patterns from oceanographic data using image processing methods based on Gradient Recognition.
Generate Manhattan, Q-Q, and PCA plots from GWAS and PCA results using ggplot2'.
This package provides methods to Get Water Attributes Visually in R ('gwavr'). This allows the user to point and click on areas within the United States and get back hydrological data, e.g. flowlines, catchments, basin boundaries, comids, etc.
Computes probabilities related to group sequential designs for normally distributed test statistics. Enables to derive critical boundaries, power, drift, and confidence intervals of such designs. Supports the alpha spending approach by Lan-DeMets (1994) <doi:10.1002/sim.4780131308>.
Statistical analysis of monthly background checks of gun purchases for the New York Times story "What Drives Gun Sales: Terrorism, Obama and Calls for Restrictions" at <https://www.nytimes.com/interactive/2015/12/10/us/gun-sales-terrorism-obama-restrictions.html> is provided.
Fit joint models of survival and multivariate longitudinal data. The longitudinal data is specified by generalised linear mixed models. The joint models are fit via maximum likelihood using an approximate expectation maximisation algorithm. Bernhardt (2015) <doi:10.1016/j.csda.2014.11.011>.
Dynamically retrieve data from the web to render HTML tables on inspection in R Markdown HTML documents.
This package provides a fast C++ implementation of the design-based, Diffusion Decision Model (DDM) and the Linear Ballistic Accumulation (LBA) model. It enables the user to optimise the choice response time model by connecting with the Differential Evolution Markov Chain Monte Carlo (DE-MCMC) sampler implemented in the ggdmc package. The package fuses the hierarchical modelling, Bayesian inference, choice response time models and factorial designs, allowing users to build their own design-based models. For more information on the underlying models, see the works by Voss, Rothermund, and Voss (2004) <doi:10.3758/BF03196893>, Ratcliff and McKoon (2008) <doi:10.1162/neco.2008.12-06-420>, and Brown and Heathcote (2008) <doi:10.1016/j.cogpsych.2007.12.002>.
This package provides classes for GeoJSON to make working with GeoJSON easier. Includes S3 classes for GeoJSON classes with brief summary output, and a few methods such as extracting and adding bounding boxes, properties, and coordinate reference systems; working with newline delimited GeoJSON'; and serializing to/from Geobuf binary GeoJSON format.
This package performs linear regression with correlated predictors, responses and correlated measurement errors in predictors and responses, correcting for biased caused by these.
Simplifies regression modeling in R by integrating multiple modeling and summarization tools into a cohesive, user-friendly interface. Designed to be accessible for researchers, particularly those in Low- and Middle-Income Countries (LMIC). Built upon widely accepted statistical methods, including logistic regression (Hosmer et al. 2013, ISBN:9781118548429), log-binomial regression (Spiegelman and Hertzmark 2005 <doi:10.1093/aje/kwi188>), Poisson and robust Poisson regression (Zou 2004 <doi:10.1093/aje/kwh090>), negative binomial regression (Hilbe 2011, ISBN:9780521179515), and linear regression (Kutner et al. 2005, ISBN:9780071122214). Leverages multiple dependencies to ensure high-quality output and generate reproducible, publication-ready tables in alignment with best practices in epidemiology and applied statistics.
These Rcpp'-based functions compute the efficient score statistics for grouped time-to-event data (Prentice and Gloeckler, 1978), with the optional inclusion of baseline covariates. Functions for estimating the parameter of interest and nuisance parameters, including baseline hazards, using maximum likelihood are also provided. A parallel set of functions allow for the incorporation of family structure of related individuals (e.g., trios). Note that the current implementation of the frailty model (Ripatti and Palmgren, 2000) is sensitive to departures from model assumptions, and should be considered experimental. For these data, the exact proportional-hazards-model-based likelihood is computed by evaluating multiple variable integration. The integration is accomplished using the Cuba library (Hahn, 2005), and the source files are included in this package. The maximization process is carried out using Brent's algorithm, with the C++ code file from John Burkardt and John Denker (Brent, 2002).
Draw geospatial objects by clicks on the map. This packages can help data analyst who want to check their own geospatial hypothesis but has no ready-made geospatial objects.
This package provides a sparklyr <https://spark.rstudio.com/> extension that provides an R interface for GraphFrames <https://graphframes.github.io/>. GraphFrames is a package for Apache Spark that provides a DataFrame-based API for working with graphs. Functionality includes motif finding and common graph algorithms, such as PageRank and Breadth-first search.
This package provides functions to compute generalized eigenvalues and eigenvectors, the generalized Schur decomposition and the generalized Singular Value Decomposition of a matrix pair, using Lapack routines.
Estimates within and between time point interactions in experience sampling data, using the Graphical vector autoregression model in combination with regularization. See also Epskamp, Waldorp, Mottus & Borsboom (2018) <doi:10.1080/00273171.2018.1454823>.
This package implements the gene-based segregation test(GESE) and the weighted GESE test for identifying genes with causal variants of large effects for family-based sequencing data. The methods are described in Qiao, D. Lange, C., Laird, N.M., Won, S., Hersh, C.P., et al. (2017). <DOI:10.1002/gepi.22037>. Gene-based segregation method for identifying rare variants for family-based sequencing studies. Genet Epidemiol 41(4):309-319. More details can be found at <http://scholar.harvard.edu/dqiao/gese>.
Create correlation heatmaps with ggplot2 and customise them with flexible annotation and clustering. Symmetric heatmaps can use triangular or mixed layouts, removing redundant information or displaying complementary information in the two halves. There is also support for general heatmaps not displaying correlations.
This package provides convenient access to the official spatial datasets of Peru as sf objects in R. This package includes a wide range of geospatial data covering various aspects of Peruvian geography, such as: administrative divisions (Source: INEI <https://ide.inei.gob.pe/>), protected natural areas (Source: GEO ANP - SERNANP <https://geo.sernanp.gob.pe/visorsernanp/>). All datasets are harmonized in terms of attributes, projection, and topology, ensuring consistency and ease of use for spatial analysis and visualization.
This package provides a collection of functions for processing Gen5 2.06 exported data. Gen5 is an essential data analysis software for BioTek plate readers <https://www.biotek.com/products/software-robotics-software/gen5-microplate-reader-and-imager-software/>. This package contains functions for data cleaning, modeling and plotting using exported data from Gen5 version 2.06. It exports technically correct data defined in (Edwin de Jonge and Mark van der Loo (2013) <https://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf>) for customized analysis. It contains Boltzmann fitting for general kinetic analysis. See <https://www.github.com/yanxianUCSB/gen5helper> for more information, documentation and examples.
Inference, goodness-of-fit tests, and predictions for continuous and discrete univariate Hidden Markov Models (HMM), including zero-inflated distributions. The goodness-of-fit test is based on a Cramer-von Mises statistic and uses parametric bootstrap to estimate the p-value. The description of the methodology is taken from Nasri et al (2020) <doi:10.1029/2019WR025122>.
Several methods may be found for selecting a subset of regressors from a set of k candidate variables in multiple linear regression. One possibility is to evaluate all possible regression models and comparing them using Mallows's Cp statistic (Cp) according to Gilmour original study. Full model is calculated, all possible combinations of regressors are generated, adjusted Cp for each submodel are computed, and the submodel with the minimum adjusted value Cp (ModelMin) is calculated. To identify the final model, the package applies a sequence of hypothesis tests on submodels nested within ModelMin, following the approach outlined in Gilmour's original paper. For more details see the help of the function final_model() and the original study (1996) <doi:10.2307/2348411>.
New multi-sample tests for testing whether multiple samples are from the same distribution. They work well particularly for high-dimensional data. Song, H. and Chen, H. (2022) <arXiv:2205.13787>.