Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Easily explore data by plotting graphs with a few lines of code. Use these ggplot() wrappers to quickly draw graphs of scatter/dots with box-whiskers, violins or SD error bars, data distributions, before-after graphs, factorial ANOVA and more. Customise graphs in many ways, for example, by choosing from colour blind-friendly palettes (12 discreet, 3 continuous and 2 divergent palettes). Use the simple code for ANOVA as ordinary (lm()) or mixed-effects linear models (lmer()), including randomised-block or repeated-measures designs, and fit non-linear outcomes as a generalised additive model (gam) using mgcv(). Obtain estimated marginal means and perform post-hoc comparisons on fitted models (via emmeans()). Also includes small datasets for practising code and teaching basics before users move on to more complex designs. See vignettes for details on usage <https://grafify.shenoylab.com/>. Citation: <doi:10.5281/zenodo.5136508>.
Data sets used in the book "R Graphics Cookbook" by Winston Chang, published by O'Reilly Media.
Generalized Odds Rate Mixture Cure (GORMC) model is a flexible model of fitting survival data with a cure fraction, including the Proportional Hazards Mixture Cure (PHMC) model and the Proportional Odds Mixture Cure Model as special cases. This package fit the GORMC model with interval censored data.
This package provides tools for estimating forest metrics such as stem volume, biomass, and carbon using regional allometric equations. The package implements widely used models including Dagnelie P., Rondeux J. & Palm R. (2013, ISBN:9782870161258) "Cubage des arbres et des peuplements forestiers - Tables et equations" <https://orbi.uliege.be/handle/2268/155356>, Vallet P., Dhote J.-F., Le Moguedec G., Ravart M. & Pignard G. (2006) "Development of total aboveground volume equations for seven important forest tree species in France" <doi:10.1016/j.foreco.2006.03.013>, Pauwels D. & Rondeux J. (1999, ISSN:07779992) "Tarifs de cubage pour les petits bois de meleze (Larix sp.) en Ardenne" <https://orbi.uliege.be/handle/2268/96128>, Massenet J.-Y. (2006) "Chapitre IV: Estimation du volume" <https://jymassenet-foret.fr/cours/dendrometrie/Coursdendrometriepdf/Dendro4-2009.pdf>, France Valley (2025) "Bilan Carbone Forestier - Methodologie" <https://www.france-valley.com/hubfs/Bilan%20Carbone%20Forestier.pdf>. Its modular structure allows transparent integration of bibliographic or user-defined allometric relationships.
Quantitative genetics tool supporting the modelling of multivariate genetic variance structures in quantitative data. It allows fitting different models through multivariate genetic-relationship-matrix (GRM) structural equation modelling (SEM) in unrelated individuals, using a maximum likelihood approach. Specifically, it combines genome-wide genotyping information, as captured by GRMs, with twin-research-based SEM techniques, St Pourcain et al. (2017) <doi:10.1016/j.biopsych.2017.09.020>, Shapland et al. (2020) <doi:10.1101/2020.08.14.251199>.
This package provides a collection of different indices and visualization techniques for evaluate the seed germination process in ecophysiological studies (Lozano-Isla et al. 2019) <doi:10.1111/1440-1703.1275>.
The genetic algorithm can be used directly to find the similarity of users and more effectively to increase the efficiency of the collaborative filtering method. By identifying the nearest neighbors to the active user, before the genetic algorithm, and by identifying suitable starting points, an effective method for user-based collaborative filtering method has been developed. This package uses an optimization algorithm (continuous genetic algorithm) to directly find the optimal similarities between active users (users for whom current recommendations are made) and others. First, by determining the nearest neighbor and their number, the number of genes in a chromosome is determined. Each gene represents the neighbor's similarity to the active user. By estimating the starting points of the genetic algorithm, it quickly converges to the optimal solutions. The positive point is the independence of the genetic algorithm on the number of data that for big data is an effective help in solving the problem.
Variable selection for ultrahigh-dimensional ("large p small n") linear Gaussian models using a fiducial framework allowing to draw inference on the parameters. Reference: Lai, Hannig & Lee (2015) <doi:10.1080/01621459.2014.931237>.
Simple package to download Google Sheets using just the sharing link. Spreadsheets can be downloaded as a data frame, or as plain text to parse manually. Google Sheets is the new name for Google Docs Spreadsheets <https://www.google.com/sheets/about>.
Datasets used in the book Graphical Data Analysis with R (Antony Unwin, CRC Press 2015).
Estimates generalized additive latent and mixed models using maximum marginal likelihood, as defined in Sorensen et al. (2023) <doi:10.1007/s11336-023-09910-z>, which is an extension of Rabe-Hesketh and Skrondal (2004)'s unifying framework for multilevel latent variable modeling <doi:10.1007/BF02295939>. Efficient computation is done using sparse matrix methods, Laplace approximation, and automatic differentiation. The framework includes generalized multilevel models with heteroscedastic residuals, mixed response types, factor loadings, smoothing splines, crossed random effects, and combinations thereof. Syntax for model formulation is close to lme4 (Bates et al. (2015) <doi:10.18637/jss.v067.i01>) and PLmixed (Rockwood and Jeon (2019) <doi:10.1080/00273171.2018.1516541>).
Calculates grey level co-occurrence matrix (GLCM) based texture measures (Hall-Beyer (2017) <https://prism.ucalgary.ca/bitstream/handle/1880/51900/texture%20tutorial%20v%203_0%20180206.pdf>; Haralick et al. (1973) <doi:10.1109/TSMC.1973.4309314>) of raster layers using a sliding rectangular window. It also includes functions to quantize a raster into grey levels as well as tabulate a glcm and calculate glcm texture metrics for a matrix.
This package provides functions for constructing Transformed and Relative Lorenz curves with survey sampling weights. Given a variable of interest measured in two groups with scaled survey weights so that their hypothetical populations are of equal size, tlorenz() computes the proportion of members of the group with smaller values (ordered from smallest to largest) needed for their sum to match the sum of the top qth percentile of the group with higher values. rlorenz() shows the fraction of the total value of the group with larger values held by the pth percentile of those in the group with smaller values. Fd() is a survey weighted cumulative distribution function and Eps() is a survey weighted inverse cdf used in rlorenz(). Ramos, Graubard, and Gastwirth (2025) <doi:10.1093/jrsssa/qnaf044>.
Selective Sweep can be calculated by five significant Population Genetics Statistics such as "Pi", "Wattersons_theta", "Tajima_D", "Kelly_ZnS" and "Omega" Statistics in specified chromosomal region. It has been developed by using the concept of "Kern" and "Schrider" (2018)<doi:10.1534/g3.118.200262>.
Implementation of several generalized F-statistics. The current version includes a generalized F-statistic based on the flexible isotonic/monotonic regression or order restricted hypothesis testing. Based on: Y. Lai (2011) <doi:10.1371/journal.pone.0019754>.
This package provides classes and functions to calculate various distance measures and routes in heterogeneous geographic spaces represented as grids. The package implements measures to model dispersal histories first presented by van Etten and Hijmans (2010) <doi:10.1371/journal.pone.0012060>. Least-cost distances as well as more complex distances based on (constrained) random walks can be calculated. The distances implemented in the package are used in geographical genetics, accessibility indicators, and may also have applications in other fields of geospatial analysis.
This is a set of functions to retrieve information about GIMMS NDVI3g files currently available online; download (and re-arrange, in the case of NDVI3g.v0) the half-monthly data sets; import downloaded files from ENVI binary (NDVI3g.v0) or NetCDF format (NDVI3g.v1) directly into R based on the widespread raster package; conduct quality control; and generate monthly composites (e.g., maximum values) from the half-monthly input data. As a special gimmick, a method is included to conveniently apply the Mann-Kendall trend test upon Raster* images, optionally featuring trend-free pre-whitening to account for lag-1 autocorrelation.
Analysis of complex ANOVA models with any combination of orthogonal/nested and fixed/random factors, as described by Underwood (1997). There are two restrictions: (i) data must be balanced; (ii) fixed nested factors are not allowed. Homogeneity of variances is checked using Cochran's C test and a posteriori comparisons of means are done using Student-Newman-Keuls (SNK) procedure. For those terms with no denominator in the F-ratio calculation, pooled mean squares and quasi F-ratios are provided. Magnitute of effects are assessed by components of variation.
These are two-sample tests for categorical data utilizing similarity information among the categories. They are useful when there is underlying structure on the categories.
Interacts with the Glassdoor API <https://www.glassdoor.com/developer/index.htm>. Allows the user to search job statistics, employer statistics, and job progression, where Glassdoor provides a breakdown of other jobs a person did after their current one.
This package provides functions to fit geostatistical data. The data can be continuous, binary or count data and the models implemented are flexible. Conjugate priors are assumed on some parameters while inference on the other parameters can be done through a full Bayesian analysis of by empirical Bayes methods.
Simulation, estimation and testing for geopolitical volatility (GEOVOL) based on the global common volatility model of Engle and Campos-Martins (2023) <doi:10.1016/j.jfineco.2022.09.009>. GEOVOL is modelled as a latent multiplicative volatility factor with heterogeneous factor loadings. Estimation is carried out as a maximization-maximization procedure, where GEOVOL and the GEOVOL loadings are estimated iteratively until convergence.
This package provides a collection of palettes and themes for ggplot2', offering a light, pastel aesthetic. Syntax follows the viridis package.
This package provides a collection of functions to set up Google Public Data Explorer <https://www.google.com/publicdata/> data visualization tool with your own data, building automatically the corresponding DataSet Publishing Language file, or DSPL (XML), metadata file jointly with the CSV files. All zip-up and ready to be published in Public Data Explorer'.