Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides methods (<doi:10.7717/peerj.11534>) are provided of calibrating and predicting shifts in allele frequencies through redundancy analysis ('vegan::rda()') and generalized additive models ('mgcv::gam()'). Visualization functions for predicted changes in allele frequencies include shift.dot.ggplot()', shift.pie.ggplot()', shift.moon.ggplot()', shift.waffle.ggplot() and shift.surf.ggplot() that are made with input data sets that are prepared by helper functions for each visualization method. Examples in the documentation show how to prepare animated climate change graphics through a time series with the gganimate package. Function amova.rda() shows how Analysis of Molecular Variance can be directly conducted with the results from redundancy analysis.
RStudio allows to show and navigate for the outline of a R Markdown file, but not for R Markdown projects with multiple files. For this reason, I have developed several RStudio addins capable of show project outline. Each addin is specialized in showing projects of different types: R Markdown project, bookdown package project and LaTeX project. There is a configuration file that allows you to customize additional searches.
Align-GVGD ('A-GVGD') is a method to predict the impact of missense substitutions based on the properties of amino acid side chains and protein multiple sequence alignments <doi:10.1136/jmg.2005.033878>. A-GVGD is an extension of the original Grantham distance to multiple sequence alignments. This package provides an alternative R implementation to the web version found on <http://agvgd.hci.utah.edu/>.
This package performs statistical testing to compare predictive models based on multiple observations of the A statistic (also known as Area Under the Receiver Operating Characteristic Curve, or AUC). Specifically, it implements a testing method based on the equivalence between the A statistic and the Wilcoxon statistic. For more information, see Hanley and McNeil (1982) <doi:10.1148/radiology.143.1.7063747>.
This package provides functions to compute upper Clopper-Pearson confidence limits of early life failure probabilities and required sample sizes of burn-in studies under further available information, e.g. from other products or technologies.
We extend existing gene enrichment tests to perform adverse event enrichment analysis. Unlike the continuous gene expression data, adverse event data are counts. Therefore, adverse event data has many zeros and ties. We propose two enrichment tests. One is a modified Fisher's exact test based on pre-selected significant adverse events, while the other is based on a modified Kolmogorov-Smirnov statistic. We add Covariate adjustment to improve the analysis."Adverse event enrichment tests using VAERS" Shuoran Li, Lili Zhao (2020) <doi:10.48550/arXiv.2007.02266>.
Different tools for managing databases of airborne particles, elaborating the main calculations and visualization of results. In a first step, data are checked using tools for quality control and all missing gaps are completed. Then, the main parameters of the pollen season are calculated and represented graphically. Multiple graphical tools are available: pollen calendars, phenological plots, time series, tendencies, interactive plots, abundance plots...
This package provides tools for Bayesian parameter estimation of adsorption isotherm models using Markov Chain Monte Carlo (MCMC) methods. This package enables users to fit non-linear and linear adsorption isotherm modelsâ Freundlich, Langmuir, and Temkinâ within a probabilistic framework, capturing uncertainty and parameter correlations. It provides posterior summaries, 95% credible intervals, convergence diagnostics (Gelman-Rubin), and visualizations through trace and density plots. With this R package, researchers can rigorously analyze adsorption behavior in environmental and chemical systems using robust Bayesian inference. For more details, see Gilks et al. (1995) <doi:10.1201/b14835>, and Gamerman & Lopes (2006) <doi:10.1201/9781482296426>.
Original idea was presented in the thesis "A statistical analysis tool for agricultural research" to obtain the degree of Master on science, National Engineering University (UNI), Lima-Peru. Some experimental data for the examples come from the CIP and others research. Agricolae offers extensive functionality on experimental design especially for agricultural and plant breeding experiments, which can also be useful for other purposes. It supports planning of lattice, Alpha, Cyclic, Complete Block, Latin Square, Graeco-Latin Squares, augmented block, factorial, split and strip plot designs. There are also various analysis facilities for experimental data, e.g. treatment comparison procedures and several non-parametric tests comparison, biodiversity indexes and consensus cluster.
Fit various smoothing spline models. Includes an ssr() function for smoothing spline regression, an nnr() function for nonparametric nonlinear regression, an snr() function for semiparametric nonlinear regression, an slm() function for semiparametric linear mixed-effects models, and an snm() function for semiparametric nonlinear mixed-effects models. See Wang (2011) <doi:10.1201/b10954> for an overview.
This package provides a collection of methods for both the rank-based estimates and least-square estimates to the Accelerated Failure Time (AFT) model. For rank-based estimation, it provides approaches that include the computationally efficient Gehan's weight and the general's weight such as the logrank weight. Details of the rank-based estimation can be found in Chiou et al. (2014) <doi:10.1007/s11222-013-9388-2> and Chiou et al. (2015) <doi:10.1002/sim.6415>. For the least-square estimation, the estimating equation is solved with generalized estimating equations (GEE). Moreover, in multivariate cases, the dependence working correlation structure can be specified in GEE's setting. Details on the least-squares estimation can be found in Chiou et al. (2014) <doi:10.1007/s10985-014-9292-x>.
Synthetic generation of 1-D and 2-D correlated random walks (CRWs) for animal movement with behavioral switching, and particle filter estimation of movement parameters from observed trajectories using Extended Kalman Filter (EKF) model. See Ackerman (2018) <https://digital.library.temple.edu/digital/collection/p245801coll10/id/499150>.
Processes noble gas mass spectrometer data to determine the isotopic composition of argon (comprised of Ar36, Ar37, Ar38, Ar39 and Ar40) released from neutron-irradiated potassium-bearing minerals. Then uses these compositions to calculate precise and accurate geochronological ages for multiple samples as well as the covariances between them. Error propagation is done in matrix form, which jointly treats all samples and all isotopes simultaneously at every step of the data reduction process. Includes methods for regression of the time-resolved mass spectrometer signals to t=0 ('time zero') for both single- and multi-collector instruments, blank correction, mass fractionation correction, detector intercalibration, decay corrections, interference corrections, interpolation of the irradiation parameter between neutron fluence monitors, and (weighted mean) age calculation. All operations are performed on the logs of the ratios between the different argon isotopes so as to properly treat them as compositional data', sensu Aitchison [1986, The Statistics of Compositional Data, Chapman and Hall].
Fits a linear-binomial model using a modified Newton-type algorithm for solving the maximum likelihood estimation problem under linear box constraints. Similar methods are described in Wagenpfeil, Schöpe and Bekhit (2025, ISBN:9783111341972) "Estimation of adjusted relative risks in log-binomial regression using the BSW algorithm". In: Mau, Mukhin, Wang and Xu (Eds.), Biokybernetika. De Gruyter, Berlin, pp. 665â 676.
Edit an Antares simulation before running it : create new areas, links, thermal clusters or binding constraints or edit existing ones. Update Antares general & optimization settings. Antares is an open source power system generator, more information available here : <https://antares-simulator.org/>.
Some convenient functions to work with arrays.
Download Alphavantage financial data <https://www.alphavantage.co/documentation/> to reduced data.table objects. Includes support functions to extract and simplify complex data returned from API calls.
It computes two frequently applied actuarial measures, the expected shortfall and the value at risk. Seven well-known classical distributions in connection to the Bell generalized family are used as follows: Bell-exponential distribution, Bell-extended exponential distribution, Bell-Weibull distribution, Bell-extended Weibull distribution, Bell-Lomax distribution, Bell-Burr-12 distribution, and Bell-Burr-X distribution. Related works include: a) Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). "A new useful exponential model with applications to quality control and actuarial data". Computational Intelligence and Neuroscience, 2022. <doi:10.1155/2022/2489998>. b) Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). "Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data". Open Physics, 21(1), 20220242. <doi:10.1515/phys-2022-0242>.
This package provides functions to conduct title and abstract screening in systematic reviews using large language models, such as the Generative Pre-trained Transformer (GPT) models from OpenAI <https://platform.openai.com/>. These functions can enhance the quality of title and abstract screenings while reducing the total screening time significantly. In addition, the package includes tools for quality assessment of title and abstract screenings, as described in Vembye, Christensen, Mølgaard, and Schytt (2025) <DOI:10.1037/met0000769>.
Three Shiny apps are provided that introduce Harvest Control Rules (HCR) for fisheries management. Introduction to HCRs provides a simple overview to how HCRs work. Users are able to select their own HCR and step through its performance, year by year. Biological variability and estimation uncertainty are introduced. Measuring performance builds on the previous app and introduces the idea of using performance indicators to measure HCR performance. Comparing performance allows multiple HCRs to be created and tested, and their performance compared so that the preferred HCR can be selected.
Easy data analysis and quality checks which are commonly used in data science. It combines the tabular and graphical visualization for easier usability. This package also creates an R Notebook with detailed data exploration with one function call. The notebook can be made interactive.
Model that assesses daily exposure to air pollution, which considers daily population mobility on a geographical scale and the spatial and temporal variability of pollutant concentrations, in addition to traditional parameters such as exposure time and pollutant concentration.
Dynamic regression for time series using Extreme Gradient Boosting with hyper-parameter tuning via Bayesian Optimization or Random Search.
This package provides functions to simplify and standardise antimicrobial resistance (AMR) data analysis and to work with microbial and antimicrobial properties by using evidence-based methods, as described in <doi:10.18637/jss.v104.i03>.