Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Density, distribution function, quantile function and random generation for the Generalized Binomial Distribution. Functions to compute the Clopper-Pearson Confidence Interval and the required sample size. Enhanced model for burn-in studies, where failures are tackled by countermeasures.
Generalizes application of gray-level co-occurrence matrix (GLCM) metrics to objects outside of images. The current focus is to apply GLCM metrics to the study of biological networks and fitness landscapes that are used in studying evolutionary medicine and biology, particularly the evolution of cancer resistance. The package was developed as part of the author's publication in Physics in Medicine and Biology Barker-Clarke et al. (2023) <doi:10.1088/1361-6560/ace305>. A general reference to learn more about mathematical oncology can be found at Rockne et al. (2019) <doi:10.1088/1478-3975/ab1a09>.
The philosophy in the package is described in Stasny (1988) <doi:10.2307/1391558> and Gutierrez, A., Trujillo, L. & Silva, N. (2014), <ISSN:1492-0921> to estimate the gross flows under complex surveys using a Markov chain approach with non response.
Streamlines exploratory data analysis by providing a turnkey approach to visualising n-dimensional data which graphically reveals correlative or associative relationships between 2 or more features. Represents all dataset features as distinct, vertically aligned bar or tile plots, with plot types auto-selected based on whether variables are categorical or numeric.
Owing to the rich shapes of Generalised Lambda Distributions (GLDs), GLD standard/quantile/Accelerated Failure Time (AFT) regression is a competitive flexible model compared to standard/quantile/AFT regression. The proposed method has some major advantages: 1) it provides a reference line which is very robust to outliers with the attractive property of zero mean residuals and 2) it gives a unified, elegant quantile regression model from the reference line with smooth regression coefficients across different quantiles. For AFT model, it also eliminates the needs to try several different AFT models, owing to the flexible shapes of GLD. The goodness of fit of the proposed model can be assessed via QQ plots and Kolmogorov-Smirnov tests and data driven smooth test, to ensure the appropriateness of the statistical inference under consideration. Statistical distributions of coefficients of the GLD regression line are obtained using simulation, and interval estimates are obtained directly from simulated data. References include the following: Su (2015) "Flexible Parametric Quantile Regression Model" <doi:10.1007/s11222-014-9457-1>, Su (2021) "Flexible parametric accelerated failure time model"<doi:10.1080/10543406.2021.1934854>.
Implementation of various inference and simulation tools to apply generalized additive models to bivariate dependence structures and non-simplified vine copulas.
Group SLOPE (Group Sorted L1 Penalized Estimation) is a penalized linear regression method that is used for adaptive selection of groups of significant predictors in a high-dimensional linear model. The Group SLOPE method can control the (group) false discovery rate at a user-specified level (i.e., control the expected proportion of irrelevant among all selected groups of predictors). For additional information about the implemented methods please see Brzyski, Gossmann, Su, Bogdan (2018) <doi:10.1080/01621459.2017.1411269>.
This function converts mfpr, numeric, or character strings representing numbers to bigq format without loss of precision.
This package provides classes and functions to calculate various distance measures and routes in heterogeneous geographic spaces represented as grids. The package implements measures to model dispersal histories first presented by van Etten and Hijmans (2010) <doi:10.1371/journal.pone.0012060>. Least-cost distances as well as more complex distances based on (constrained) random walks can be calculated. The distances implemented in the package are used in geographical genetics, accessibility indicators, and may also have applications in other fields of geospatial analysis.
This package provides function to apply "Group sequential enrichment design incorporating subgroup selection" (GSED) method proposed by Magnusson and Turnbull (2013) <doi:10.1002/sim.5738>.
Efficient algorithms for fitting regularization paths for linear or logistic regression models penalized by LEP.
This package creates bar plots with rounded corners using ggplot2'. The code in this package was adapted from a solution provided by Stack Overflow user sthoch in the following post <https://stackoverflow.com/questions/62176038/r-ggplot2-bar-chart-with-round-corners-on-top-of-bar>.
Método simples e eficiente de geolocalizar dados no Brasil. O pacote é baseado em conjuntos de dados espaciais abertos de endereços brasileiros, utilizando como fonte principal o Cadastro Nacional de Endereços para Fins Estatà sticos (CNEFE). O CNEFE é publicado pelo Instituto Brasileiro de Geografia e Estatà stica (IBGE), órgão oficial de estatà sticas e geografia do Brasil. (A simple and efficient method for geolocating data in Brazil. The package is based on open spatial datasets of Brazilian addresses, primarily using the Cadastro Nacional de Endereços para Fins Estatà sticos (CNEFE), published by the Instituto Brasileiro de Geografia e Estatà stica (IBGE), Brazil's official statistics and geography agency.).
Ridge regression due to Hoerl and Kennard (1970)<DOI:10.1080/00401706.1970.10488634> and generalized ridge regression due to Yang and Emura (2017)<DOI:10.1080/03610918.2016.1193195> with optimized tuning parameters. These ridge regression estimators (the HK estimator and the YE estimator) are computed by minimizing the cross-validated mean squared errors. Both the ridge and generalized ridge estimators are applicable for high-dimensional regressors (p>n), where p is the number of regressors, and n is the sample size.
Reads annual financial reports including assets, liabilities, dividends history, stockholder composition and much more from Bovespa's DFP, FRE and FCA systems <http://www.b3.com.br/pt_br/produtos-e-servicos/negociacao/renda-variavel/empresas-listadas.htm>. These are web based interfaces for all financial reports of companies traded at Bovespa. The package is specially designed for large scale data importation, keeping a tabular (long) structure for easier processing.
Many tools for Geometric Data Analysis (Le Roux & Rouanet (2005) <doi:10.1007/1-4020-2236-0>), such as MCA variants (Specific Multiple Correspondence Analysis, Class Specific Analysis), many graphical and statistical aids to interpretation (structuring factors, concentration ellipses, inductive tests, bootstrap validation, etc.) and multiple-table analysis (Multiple Factor Analysis, between- and inter-class analysis, Principal Component Analysis and Correspondence Analysis with Instrumental Variables, etc.).
It gathers information, meta-data and scripts in a two-part Henry-Stewart talk by Zhao (2009, <doi:10.69645/DCRY5578>), which showcases analysis in aspects such as testing of polymorphic variant(s) for Hardy-Weinberg equilibrium, association with trait using genetic and statistical models as well as Bayesian implementation, power calculation in study design and genetic annotation. It also covers R integration with the Linux environment, GitHub, package creation and web applications.
Imports time series data from the Quandl database <https://data.nasdaq.com/>. The package uses the json api at <https://data.nasdaq.com/search>, local caching ('memoise package) and the tidy format by default. Also allows queries of databases, allowing the user to see which time series are available for each database id. In short, it is an alternative to package Quandl', with faster data importation in the tidy/long format.
New multi-sample tests for testing whether multiple samples are from the same distribution. They work well particularly for high-dimensional data. Song, H. and Chen, H. (2022) <arXiv:2205.13787>.
Fits a geographically weighted regression model using zero inflated probability distributions. Has the zero inflated negative binomial distribution (zinb) as default, but also accepts the zero inflated Poisson (zip), negative binomial (negbin) and Poisson distributions. Can also fit the global versions of each regression model. Da Silva, A. R. & De Sousa, M. D. R. (2023). "Geographically weighted zero-inflated negative binomial regression: A general case for count data", Spatial Statistics <doi:10.1016/j.spasta.2023.100790>. Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). "Geographically weighted regression: a method for exploring spatial nonstationarity", Geographical Analysis, <doi:10.1111/j.1538-4632.1996.tb00936.x>. Yau, K. K. W., Wang, K., & Lee, A. H. (2003). "Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros", Biometrical Journal, <doi:10.1002/bimj.200390024>.
R Interface to C API of GLPK, depends on GLPK Version >= 4.42.
Convert general transit feed specification (GTFS) data to global positioning system (GPS) records in data.table format. It also has some functions to subset GTFS data in time and space and to convert both representations to simple feature format.
This package provides a convenient R interface to the Genotype-Tissue Expression (GTEx) Portal API. The GTEx project is a comprehensive public resource for studying tissue-specific gene expression and regulation in human tissues. Through systematic analysis of RNA sequencing data from 54 non-diseased tissue sites across nearly 1000 individuals, GTEx provides crucial insights into the relationship between genetic variation and gene expression. This data is accessible through the GTEx Portal API enabling programmatic access to human gene expression data. For more information on the API, see <https://gtexportal.org/api/v2/redoc>.
We define generalized multipartite networks as the joint observation of several networks implying some common pre-specified groups of individuals. The aim is to fit an adapted version of the popular stochastic block model to multipartite networks, as described in Bar-hen, Barbillon and Donnet (2020) <arXiv:1807.10138>.