Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package contains five functions performing the calculation of unconditional and conditional Granger-causality spectra, bootstrap inference on both, and inference on the difference between them via the bootstrap approach of Farne and Montanari, 2018 <arXiv:1803.00374>.
This package provides a light-weight, dependency-free, application programming interface (API) to access system-level Git <https://git-scm.com/downloads> commands from within R'. Contains wrappers and defaults for common data science workflows as well as Zsh <https://github.com/ohmyzsh/ohmyzsh> plugin aliases. A generalized API syntax is also available.
Streamlines downloading and cleaning biodiversity data from Integrated Digitized Biocollections (iDigBio) and the Global Biodiversity Information Facility (GBIF).
This package contains an engine for spatially-explicit eco-evolutionary mechanistic models with a modular implementation and several support functions. It allows exploring the consequences of ecological and macroevolutionary processes across realistic or theoretical spatio-temporal landscapes on biodiversity patterns as a general term. Reference: Oskar Hagen, Benjamin Flueck, Fabian Fopp, Juliano S. Cabral, Florian Hartig, Mikael Pontarp, Thiago F. Rangel, Loic Pellissier (2021) "gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth's biodiversity" <doi:10.1371/journal.pbio.3001340>.
Solves a least squares system Ax~=b (dim(A)=(m,n) with m >= n) with a precondition matrix B: BAx=Bb (dim(B)=(n,m)). Implemented method is based on GMRES (Saad, Youcef; Schultz, Martin H. (1986). "GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems" <doi:10.1137/0907058>) with callback functions, i.e. no explicit A, B or b are required.
This package implements a novel method for privatizing network data using differential privacy. Provides functions for generating synthetic networks based on LSM (Latent Space Model), applying differential privacy to network latent positions to achieve overall network privatization, and evaluating the utility of privatized networks through various network statistics. The privatize and evaluate functions support both LSM and RDPG (Random Dot Product Graph). For generating RDPG networks, users are encouraged to use the randnet package <https://CRAN.R-project.org/package=randnet>. For more details, see the "proposed method" section of Liu, Bi, and Li (2025) <doi:10.48550/arXiv.2507.00402>.
Compute bivariate dependence measures and perform bivariate competing risks analysis under the generalized Farlie-Gumbel-Morgenstern (FGM) copula. See Shih and Emura (2018) <doi:10.1007/s00180-018-0804-0> and Shih and Emura (2019) <doi:10.1007/s00362-016-0865-5> for details.
This package provides a collection of functions for processing Gen5 2.06 exported data. Gen5 is an essential data analysis software for BioTek plate readers <https://www.biotek.com/products/software-robotics-software/gen5-microplate-reader-and-imager-software/>. This package contains functions for data cleaning, modeling and plotting using exported data from Gen5 version 2.06. It exports technically correct data defined in (Edwin de Jonge and Mark van der Loo (2013) <https://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf>) for customized analysis. It contains Boltzmann fitting for general kinetic analysis. See <https://www.github.com/yanxianUCSB/gen5helper> for more information, documentation and examples.
Analyzes joint attribute data (e.g., species abundance) that are combinations of continuous and discrete data with Gibbs sampling. Full model and computation details are described in Clark et al. (2018) <doi:10.1002/ecm.1241>.
Density, distribution function, quantile function and random generation for the bimodal skew symmetric normal distribution of Hassan and El-Bassiouni (2016) <doi:10.1080/03610926.2014.882950>.
Create groups of ggplot2 layers that can be easily migrated from one plot to another, reducing redundant code and improving the ability to format many plots that draw from the same source ggpacket layers.
This package provides a lightweight fork of gMCP with functions for graphical described multiple test procedures introduced in Bretz et al. (2009) <doi:10.1002/sim.3495> and Bretz et al. (2011) <doi:10.1002/bimj.201000239>. Implements a flexible function using ggplot2 to create multiplicity graph visualizations. Contains instructions of multiplicity graph and graphical testing for group sequential design, described in Maurer and Bretz (2013) <doi:10.1080/19466315.2013.807748>, with necessary unit testing using testthat'.
Individual-based simulations forward in time, simulating how patterns in ancestry along the genome change after admixture. Full description can be found in Janzen (2021) <doi:10.1111/2041-210X.13612>.
The goal of GHCNr is to provide a fast and friendly interface with the Global Historical Climatology Network daily (GHCNd) database, which contains daily summaries of weather station data worldwide (<https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily>). GHCNd is accessed through the web API <https://www.ncei.noaa.gov/access/services/data/v1>. GHCNr main functionalities consist of downloading data from GHCNd, filter it, and to aggregate it at monthly and annual scales.
Encodes simple feature ('sf') objects and coordinates, and decodes polylines using the Google polyline encoding algorithm (<https://developers.google.com/maps/documentation/utilities/polylinealgorithm>).
This package provides a comprehensive suite of genome-wide association study (GWAS) methods specifically designed for biobank-scale data, including but not limited to, robust approaches for time-to-event traits (Li et al., 2025 <doi:10.1038/s43588-025-00864-z>) and ordinal categorical traits (Bi et al., 2021 <doi:10.1016/j.ajhg.2021.03.019>). The package also offers general frameworks for GWAS of any trait type (Bi et al., 2020 <doi:10.1016/j.ajhg.2020.06.003>), while accounting for sample relatedness (Xu et al., 2025 <doi:10.1038/s41467-025-56669-1>) or population structure (Ma et al., 2025 <doi:10.1186/s13059-025-03827-9>). By accurately approximating score statistic distributions using saddlepoint approximation (SPA), these methods can effectively control type I error rates for rare variants and in the presence of unbalanced phenotype distributions. Additionally, the package includes functions for simulating genotype and phenotype data to support research and method development.
The main purpose of this package is to allow fitting of mixture distributions with generalised additive models for location scale and shape models see Chapter 7 of Stasinopoulos et al. (2017) <doi:10.1201/b21973-4>.
The geographical complexity of individual variables can be characterized by the differences in local attribute variables, while the common geographical complexity of multiple variables can be represented by fluctuations in the similarity of vectors composed of multiple variables. In spatial regression tasks, the goodness of fit can be improved by incorporating a geographical complexity representation vector during modeling, using a geographical complexity-weighted spatial weight matrix, or employing local geographical complexity kernel density. Similarly, in spatial sampling tasks, samples can be selected more effectively by using a method that weights based on geographical complexity. By optimizing performance in spatial regression and spatial sampling tasks, the spatial bias of the model can be effectively reduced.
This package provides tools for working with polygons with holes in ggplot2', with a new geom for drawing a polypath applying the evenodd or winding rules.
This package provides a bottom up model to estimate the emission levels of public transport systems based on General Transit Feed Specification (GTFS) data. The package requires two main inputs: i) Public transport data in the GTFS standard format; and ii) Some basic information on fleet characteristics such as fleet age, technology, fuel and Euro stage. As it stands, the package estimates several pollutants at high spatial and temporal resolutions. Pollution levels can be calculated for specific transport routes, trips, time of the day or for the transport system as a whole. The output with emission estimates can be extracted in different formats, supporting analysis on how emission levels vary across space, time and by fleet characteristics. A full description of the methods used in the gtfs2emis model is presented in Vieira, J. P. B.; Pereira, R. H. M.; Andrade, P. R. (2022) <doi:10.31219/osf.io/8m2cy>.
This package provides methods for processing spatial data for decision-making. This package is an R implementation of methods provided by the open source software GeoFIS <https://www.geofis.org> (Leroux et al. 2018) <doi:10.3390/agriculture8060073>. The main functionalities are the management zone delineation (Pedroso et al. 2010) <doi:10.1016/j.compag.2009.10.007> and data aggregation (Mora-Herrera et al. 2020) <doi:10.1016/j.compag.2020.105624>.
This package provides methods for searching through genealogical data and displaying the results. Plotting algorithms assist with data exploration and publication-quality image generation. Includes interactive genealogy visualization tools. Provides parsing and calculation methods for variables in descendant branches of interest. Uses the Grammar of Graphics.
Efficient computation of likelihoods in design-based choice response time models, including the Decision Diffusion Model, is supported. The package enables rapid evaluation of likelihood functions for both single- and multi-subject models across trial-level data. It also offers fast initialisation of starting parameters for genetic sampling with many Markov chains, facilitating estimation in complex models typically found in experimental psychology and behavioural science. These optimisations help reduce computational overhead in large-scale model fitting tasks.
Allows plotting data on bathymetric maps using ggplot2'. Plotting oceanographic spatial data is made as simple as feasible, but also flexible for custom modifications. Data that contain geographic information from anywhere around the globe can be plotted on maps generated by the basemap() or qmap() functions using ggplot2 layers separated by the + operator. The package uses spatial shape- ('sf') and raster ('stars') files, geospatial packages for R to manipulate, and the ggplot2 package to plot these files. The package ships with low-resolution spatial data files and higher resolution files for detailed maps are stored in the ggOceanMapsLargeData repository on GitHub and downloaded automatically when needed.