Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements genetic algorithm and particle swarm algorithm for real-valued functions. Various modifications (including hybridization and elitism) of these algorithms are provided. Implemented functions are based on ideas described in S. Katoch, S. Chauhan, V. Kumar (2020) <doi:10.1007/s11042-020-10139-6> and M. Clerc (2012) <https://hal.archives-ouvertes.fr/hal-00764996>.
This package provides a model building procedure to build parsimonious geoadditive model from a large number of covariates. Continuous, binary and ordered categorical responses are supported. The model building is based on component wise gradient boosting with linear effects, smoothing splines and a smooth spatial surface to model spatial autocorrelation. The resulting covariate set after gradient boosting is further reduced through backward elimination and aggregation of factor levels. The package provides a model based bootstrap method to simulate prediction intervals for point predictions. A test data set of a soil mapping case study in Berne (Switzerland) is provided. Nussbaum, M., Walthert, L., Fraefel, M., Greiner, L., and Papritz, A. (2017) <doi:10.5194/soil-3-191-2017>.
Interact with Google's Cloud Natural Language API <https://cloud.google.com/natural-language/> (v1) via R. The API has four main features, all of which are available through this R package: syntax analysis and part-of-speech tagging, entity analysis, sentiment analysis, and language identification.
An efficient algorithm to generate group assignments for classroom settings while minimizing repeated pairings across multiple rounds.
Conducts causal inference with interactive fixed-effect models. It imputes counterfactuals for each treated unit using control group information based on a linear interactive fixed effects model that incorporates unit-specific intercepts interacted with time-varying coefficients. This method generalizes the synthetic control method to the case of multiple treated units and variable treatment periods, and improves efficiency and interpretability.
This package provides a genetic algorithm framework for regression problems requiring discrete optimization over model spaces with unknown or varying dimension, where gradient-based methods and exhaustive enumeration are impractical. Uses a compact chromosome representation for tasks including spline knot placement and best-subset variable selection, with constraint-preserving crossover and mutation, exact uniform initialization under spacing constraints, steady-state replacement, and optional island-model parallelization from Lu, Lund, and Lee (2010, <doi:10.1214/09-AOAS289>). The computation is built on the GA engine of Scrucca (2017, <doi:10.32614/RJ-2017-008>) and changepointGA engine from Li and Lu (2024, <doi:10.48550/arXiv.2410.15571>). In challenging high-dimensional settings, GAReg enables efficient search and delivers near-optimal solutions when alternative algorithms are not well-justified.
This package provides a framework to assist creation of marine ecosystem models, generating either R or C++ code which can then be optimised using the TMB package and standard R tools. Principally designed to reproduce gadget2 models in TMB', but can be extended beyond gadget2's capabilities. Kasper Kristensen, Anders Nielsen, Casper W. Berg, Hans Skaug, Bradley M. Bell (2016) <doi:10.18637/jss.v070.i05> "TMB: Automatic Differentiation and Laplace Approximation.". Begley, J., & Howell, D. (2004) <https://files01.core.ac.uk/download/pdf/225936648.pdf> "An overview of Gadget, the globally applicable area-disaggregated general ecosystem toolbox. ICES.".
Finds subsets of sets of genotypes with a high Heterozygosity, and Mean of Transformed Kinships (MTK), measures that can indicate a subset would be beneficial for rare-trait discovery and genome-wide association scanning, respectively.
This package provides a high performance interface to the Global Biodiversity Information Facility, GBIF'. In contrast to rgbif', which can access small subsets of GBIF data through web-based queries to a central server, gbifdb provides enhanced performance for R users performing large-scale analyses on servers and cloud computing providers, providing full support for arbitrary SQL or dplyr operations on the complete GBIF data tables (now over 1 billion records, and over a terabyte in size). gbifdb accesses a copy of the GBIF data in parquet format, which is already readily available in commercial computing clouds such as the Amazon Open Data portal and the Microsoft Planetary Computer, or can be accessed directly without downloading, or downloaded to any server with suitable bandwidth and storage space. The high-performance techniques for local and remote access are described in <https://duckdb.org/why_duckdb> and <https://arrow.apache.org/docs/r/articles/fs.html> respectively.
This package provides functions to fit two-dimensional Gaussian functions, predict values from fits, and produce plots of predicted data via either ggplot2 or base R plotting.
Fits multiple-group latent class analysis (LCA) for exploring differences between populations in the data with a multilevel structure. There are two approaches to reflect group differences in glca: fixed-effect LCA (Bandeen-Roche et al (1997) <doi:10.1080/01621459.1997.10473658>; Clogg and Goodman (1985) <doi:10.2307/270847>) and nonparametric random-effect LCA (Vermunt (2003) <doi:10.1111/j.0081-1750.2003.t01-1-00131.x>).
This package provides a genetic algorithm for finding variable subsets in high dimensional data with high prediction performance. The genetic algorithm can use ordinary least squares (OLS) regression models or partial least squares (PLS) regression models to evaluate the prediction power of variable subsets. By supporting different cross-validation schemes, the user can fine-tune the tradeoff between speed and quality of the solution.
Companion package for the manual guide-R : Guide pour lâ analyse de données dâ enquêtes avec R available at <https://larmarange.github.io/guide-R/>. guideR implements miscellaneous functions introduced in guide-R to facilitate statistical analysis and manipulation of survey data.
Generalized Linear Mixed Model (GLMM) for Binary Randomized Response Data. Includes Cauchit, Compl. Log-Log, Logistic, and Probit link functions for Bernoulli Distributed RR data. RR Designs: Warner, Forced Response, Unrelated Question, Kuk, Crosswise, and Triangular. Reference: Fox, J-P, Veen, D. and Klotzke, K. (2018). Generalized Linear Mixed Models for Randomized Responses. Methodology. <doi:10.1027/1614-2241/a000153>.
Analyzes joint attribute data (e.g., species abundance) that are combinations of continuous and discrete data with Gibbs sampling. Full model and computation details are described in Clark et al. (2018) <doi:10.1002/ecm.1241>.
Annotation of ggplot2 plots with arbitrary TikZ code, using absolute data or relative plot coordinates.
Palettes based on video games.
Implement maximum likelihood estimation for Poisson generalized linear models with grouped and right-censored count data. Intended to be used for analyzing grouped and right-censored data, which is widely applied in many branches of social sciences. The algorithm implemented is described in Fu et al., (2021) <doi:10.1111/rssa.12678>.
Extension of ggplot2 providing layers, scales and preprocessing functions useful to represent behavioural variables that are recorded over multiple animals and days. This package is part of the rethomics framework <https://rethomics.github.io/>.
An implementation of the International Bureau of Weights and Measures (BIPM) generalized consensus estimators used to assign the reference value in a key comparison exercise. This can also be applied to any interlaboratory study. Given a set of different sources, primary laboratories or measurement methods this package provides an evaluation of the variance components according to the selected statistical method for consensus building. It also implements the comparison among different consensus builders and evaluates the participating method or sources against the consensus reference value. Based on a diverse set of references, DerSimonian-Laird (1986) <doi:10.1016/0197-2456(86)90046-2>, for a complete list of references look at the reference section in the package documentation.
Homogenize GNSS (Global Navigation Satellite System) time-series. The general model is a segmentation in the mean model including a periodic function and considering monthly variances, see Quarello (2020) <arXiv:2005.04683>.
Discrete scales for the colorblind-friendly Okabe-Ito palette, including color', fill', and edge_colour'. ggokabeito provides ggplot2 and ggraph scales to easily use the Okabe-Ito palette in your data visualizations.
Promote access to the GESLA <https://gesla787883612.wordpress.com> (Global Extreme Sea Level Analysis) dataset, a higher-frequency sea-level record data from all over the world. It provides functions to download it entirely, or query subsets directly into R, without the need of downloading the full dataset. Also, it provides a built-in web-application, so that users can apply basic filters to select the data of interest, generating informative plots, and showing the selected sites.
Identifies implausible anthropometric (e.g., height, weight) measurements in irregularly spaced longitudinal datasets, such as those from electronic health records.