Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Read, analyze, modify, and write GAMS (General Algebraic Modeling System) data. The main focus of gamstransfer is the highly efficient transfer of data with GAMS <https://www.gams.com/>, while keeping these operations as simple as possible for the user. The transfer of data usually takes place via an intermediate GDX (GAMS Data Exchange) file. Additionally, gamstransfer provides utility functions to get an overview of GAMS data and to check its validity.
This package provides a variety of functions to fit linear and nonlinear regression with a large selection of distributions.
This package provides functions for performing graphical difference testing. Differences are generated between raster images. Comparisons can be performed between different package versions and between different R versions.
Light procedures for learning Global Vector Autoregression model (GVAR) of Pesaran, Schuermann and Weiner (2004) <DOI:10.1198/073500104000000019> and Dees, di Mauro, Pesaran and Smith (2007) <DOI:10.1002/jae.932>.
An R package for creating panels of diagnostic plots for residuals from a model using ggplot2 and plotly to analyze residuals and model assumptions from a variety of viewpoints. It also allows for the creation of interactive diagnostic plots.
This package provides ggplot2 geoms analogous to geom_col() and geom_bar() that allow for treemaps using treemapify nested within each bar segment. Also provides geometries for subgroup bordering and text annotation.
The geographic dimension plays a fundamental role in multidimensional systems. To define a geographic dimension in a star schema, we need a table with attributes corresponding to the levels of the dimension. Additionally, we will also need one or more geographic layers to represent the data using this dimension. The goal of this package is to support the definition of geographic dimensions from layers of geographic information related to each other. It makes it easy to define relationships between layers and obtain the necessary data from them.
Generation of survival data with one (binary) time-dependent covariate. Generation of survival data arising from a progressive illness-death model.
Simplify your R data analysis and data visualization workflow by turning your data frame into an interactive Tableau'-like interface, leveraging the graphic-walker JavaScript library and the htmlwidgets package.
Provide specialized ggplot2 layers and scales for spatial uncertainty visualization, including bivariate choropleth maps, pixel maps, glyph maps, and exceedance probability maps.
This package provides tools to download data from the GISCO (Geographic Information System of the Commission) Eurostat database <https://ec.europa.eu/eurostat/web/gisco>. Global and European map data available. This package is in no way officially related to or endorsed by Eurostat.
This package provides a gate-keeping procedure to test a primary and a secondary endpoint in a group sequential design with multiple interim looks. Computations related to group sequential primary and secondary boundaries. Refined secondary boundaries are calculated for a gate-keeping test on a primary and a secondary endpoint in a group sequential design with multiple interim looks. The choices include both the standard boundaries and the boundaries using error spending functions. See Tamhane et al. (2018), "A gatekeeping procedure to test a primary and a secondary endpoint in a group sequential design with multiple interim looks", Biometrics, 74(1), 40-48.
The ggplot2 package provides a powerful set of tools for visualising and investigating data. The ggsoccer package provides a set of functions for elegantly displaying and exploring soccer event data with ggplot2'. Providing extensible layers and themes, it is designed to work smoothly with a variety of popular sports data providers.
This package provides a tool which allows users the ability to intuitively create flexible, reproducible portable document format reports comprised of aesthetically pleasing tables, images, plots and/or text.
Implementations of the treatment effect estimators for hybrid (self-selection) experiments, as developed by Brian J. Gaines and James H. Kuklinski, (2011), "Experimental Estimation of Heterogeneous Treatment Effects Related to Self-Selection," American Journal of Political Science 55(3): 724-736.
Since their introduction by Bose and Nair (1939) <https://www.jstor.org/stable/40383923>, partially balanced incomplete block (PBIB) designs remain an important class of incomplete block designs. The concept of association scheme was used by Bose and Shimamoto (1952) <doi:10.1080/01621459.1952.10501161> for the classification of these designs. The constraint of resources always motivates the experimenter to advance towards PBIB designs, more specifically to higher associate class PBIB designs from balanced incomplete block designs. It is interesting to note that many times higher associate PBIB designs perform better than their counterpart lower associate PBIB designs for the same set of parameters v, b, r, k and lambda_i (i=1,2...m). This package contains functions named GETD() for generating m-associate (m>=2) class PBIB designs along with parameters (v, b, r, k and lambda_i, i = 1, 2,â ¦,m) based on Generalized Triangular (GT) Association Scheme. It also calculates the Information matrix, Average variance factor and canonical efficiency factor of the generated design. These designs, besides having good efficiency, require smaller number of replications and smallest possible concurrence of treatment pairs.
It provides a better alternative for stacked bar plot by creating a segmented total bar plot with custom annotations and labels. It is useful for visualizing the total of a variable and its segments in a single bar, making it easier to compare the segments and their contributions to the total.
Create graticule lines and labels for maps. Control the creation of lines or tiles by setting their placement (at particular meridians and parallels) and extent (along parallels and meridians). Labels are created independently of lines.
Supports image files and graphic objects to be visualized in ggplot2 graphic system.
This package provides statistical methods to check if a parametric family of conditional density functions fits to some given dataset of covariates and response variables. Different test statistics can be used to determine the goodness-of-fit of the assumed model, see Andrews (1997) <doi:10.2307/2171880>, Bierens & Wang (2012) <doi:10.1017/S0266466611000168>, Dikta & Scheer (2021) <doi:10.1007/978-3-030-73480-0> and Kremling & Dikta (2024) <doi:10.48550/arXiv.2409.20262>. As proposed in these papers, the corresponding p-values are approximated using a parametric bootstrap method.
Providing various equations to calculate Gini coefficients. The methods used in this package can be referenced from Brown MC (1994) <doi: 10.1016/0277-9536(94)90189-9>.
This package implements the GALAHAD algorithm (Geometry-Adaptive Lyapunov'-Assured Hybrid Optimizer), combining Riemannian metrics, Lyapunov stability checks, and trust-region methods for stable optimization of mixed-geometry parameters. Designed for biological modeling (germination, dose-response, survival) where rates, concentrations, and unconstrained variables coexist. Developed at the Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota. Based on Conn et al. (2000) <doi:10.1137/1.9780898719857>, Amari (1998) <doi:10.1162/089976698300017746>, Beck & Teboulle (2003) <doi:10.1016/S0167-6377(02)00231-6>, Nesterov (2017) <https://www.jstor.org/stable/resrep30722>, and Walne et al. (2020) <doi:10.1002/agg2.20098>.
Efficient algorithms for fitting generalized linear and additive models with group elastic net penalties as described in Helwig (2025) <doi:10.1080/10618600.2024.2362232>. Implements group LASSO, group MCP, and group SCAD with an optional group ridge penalty. Computes the regularization path for linear regression (gaussian), multivariate regression (multigaussian), smoothed support vector machines (svm1), squared support vector machines (svm2), logistic regression (binomial), multinomial logistic regression (multinomial), log-linear count regression (poisson and negative.binomial), and log-linear continuous regression (gamma and inverse gaussian). Supports default and formula methods for model specification, k-fold cross-validation for tuning the regularization parameters, and nonparametric regression via tensor product reproducing kernel (smoothing spline) basis function expansion.
This package provides a unified framework for sparse-group regularization and precision matrix estimation in Gaussian graphical models. It implements multiple sparse-group penalties, including sparse-group lasso, sparse-group adaptive lasso, sparse-group SCAD, and sparse-group MCP, and solves them efficiently using ADMM-based optimization. The package is designed for high-dimensional network inference where both sparsity and group structure are present.