Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Display a random fact about Carl Friedrich Gauss based the on collection curated by Mike Cavers via the <http://gaussfacts.com> site.
An extension of ggplot2 that makes it easy to add raw grid output, such as customised annotations, to a ggplot2 plot.
This package provides a simple API for downloading and reading xml data directly from Lattes <http://lattes.cnpq.br/>.
Quantification, analysis, and visualization of urban greenness within city networks using data from OpenStreetMap <https://www.openstreetmap.org>.
Mainly contains a plotting function ggseg3d(), and data of two standard brain atlases (Desikan-Killiany and aseg). By far, the largest bit of the package is the data for each of the atlases. The functions and data enable users to plot tri-surface mesh plots of brain atlases, and customise these by projecting colours onto the brain segments based on values in their own data sets. Functions are wrappers for plotly'. Mowinckel & Vidal-Piñeiro (2020) <doi:10.1177/2515245920928009>.
Help to the occasional R user for synthesis and enhanced graphical visualization of redundancy analysis (RDA) and principal component analysis (PCA) methods and objects. Inputs are : data frame, RDA (package vegan') and PCA (package FactoMineR') objects. Outputs are : synthesized results of RDA, displayed in console and saved in tables ; displayed and saved objects of PCA graphic visualization of individuals and variables projections with multiple graphic parameters.
This package provides ggplot2 geoms that allow groups of data points to be outlined or highlighted for emphasis. This is particularly useful when working with dense datasets that are prone to overplotting.
This package provides functions for rendering Bezier curves (Pomax, 2018) <https://pomax.github.io/bezierinfo/> in grid'. There is support for both quadratic and cubic Bezier curves. There are also functions for calculating points on curves, tangents to curves, and normals to curves.
The Genie algorithm (Gagolewski, 2021 <DOI:10.1016/j.softx.2021.100722>) is a robust and outlier-resistant hierarchical clustering method (Gagolewski, Bartoszuk, Cena, 2016 <DOI:10.1016/j.ins.2016.05.003>). This package features its faster and more powerful version. It allows clustering with respect to mutual reachability distances, enabling it to act as a noise point detector or a version of HDBSCAN* that can identify a predefined number of clusters. The package also features an implementation of the Gini and Bonferroni inequality indices, external cluster validity measures (e.g., the normalised clustering accuracy, the adjusted Rand index, the Fowlkes-Mallows index, and normalised mutual information), and internal cluster validity indices (e.g., the Calinski-Harabasz, Davies-Bouldin, Ball-Hall, Silhouette, and generalised Dunn indices). The Python version of genieclust is available via PyPI'.
This package implements a novel method for privatizing network data using differential privacy. Provides functions for generating synthetic networks based on LSM (Latent Space Model), applying differential privacy to network latent positions to achieve overall network privatization, and evaluating the utility of privatized networks through various network statistics. The privatize and evaluate functions support both LSM and RDPG (Random Dot Product Graph). For generating RDPG networks, users are encouraged to use the randnet package <https://CRAN.R-project.org/package=randnet>. For more details, see the "proposed method" section of Liu, Bi, and Li (2025) <doi:10.48550/arXiv.2507.00402>.
This package contains the implementation of a binary large margin classifier based on Gabriel Graph. References for this method can be found in L.C.B. Torres et al. (2015) <doi:10.1049/el.2015.1644>.
The American Association Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) BioPharma Collaborative represents a multi-year, multi-institution effort to build a pan-cancer repository of linked clinico-genomic data. The genomic and clinical data are provided in multiple releases (separate releases for each cancer cohort with updates following data corrections), which are stored on the data sharing platform Synapse <https://www.synapse.org/>. The genieBPC package provides a seamless way to obtain the data corresponding to each release from Synapse and to prepare datasets for analysis.
This package provides statistical methods to check if a parametric family of conditional density functions fits to some given dataset of covariates and response variables. Different test statistics can be used to determine the goodness-of-fit of the assumed model, see Andrews (1997) <doi:10.2307/2171880>, Bierens & Wang (2012) <doi:10.1017/S0266466611000168>, Dikta & Scheer (2021) <doi:10.1007/978-3-030-73480-0> and Kremling & Dikta (2024) <doi:10.48550/arXiv.2409.20262>. As proposed in these papers, the corresponding p-values are approximated using a parametric bootstrap method.
This package provides plotting functions for visualizing pedigrees and family trees. The package complements a behavior genetics package BGmisc [Garrison et al. (2024) <doi:10.21105/joss.06203>] by rendering pedigrees using the ggplot2 framework. Features include support for duplicated individuals, complex mating structures, integration with simulated pedigrees, and layout customization. Due to the impending deprecation of kinship2, version 1.0 incorporates the layout helper functions from kinship2. The pedigree alignment algorithms are adapted from kinship2 [Sinnwell et al. (2014) <doi:10.1159/000363105>]. We gratefully acknowledge the original authors: Jason Sinnwell, Terry Therneau, Daniel Schaid, and Elizabeth Atkinson for their foundational work.
This package contains the framework of the estimation, sampling, and hypotheses testing for two special distributions (Exponentiated Exponential-Pareto and Exponentiated Inverse Gamma-Pareto) within the family of Generalized Exponentiated Composite distributions. The detailed explanation and the applications of these two distributions were introduced in Bowen Liu, Malwane M.A. Ananda (2022) <doi:10.1080/03610926.2022.2050399>, Bowen Liu, Malwane M.A. Ananda (2022) <doi:10.3390/math10111895>, and Bowen Liu, Malwane M.A. Ananda (2022) <doi:10.3390/app13010645>.
This package provides an R interface to the GeoNetwork API (<https://geonetwork-opensource.org/#api>) allowing to upload and publish metadata in a GeoNetwork web-application and expose it to OGC CSW.
Sequential change-point tests, parameters estimation, and goodness-of-fit tests for generalized Ornstein-Uhlenbeck processes.
River hydrograph separation and daily runoff time series analysis. Provides various filters to separate baseflow and quickflow. Implements advanced separation technique by Rets et al. (2022) <doi:10.1134/S0097807822010146> which involves meteorological data to reveal genetic components of the runoff: ground, rain, thaw and spring (seasonal thaw). High-performance C++17 computation, annually aggregated variables, statistical testing and numerous plotting functions for high-quality visualization.
Generic Machine Learning Inference on heterogeneous treatment effects in randomized experiments as proposed in Chernozhukov, Demirer, Duflo and Fernández-Val (2020) <arXiv:1712.04802>. This package's workhorse is the mlr3 framework of Lang et al. (2019) <doi:10.21105/joss.01903>, which enables the specification of a wide variety of machine learners. The main functionality, GenericML(), runs Algorithm 1 in Chernozhukov, Demirer, Duflo and Fernández-Val (2020) <arXiv:1712.04802> for a suite of user-specified machine learners. All steps in the algorithm are customizable via setup functions. Methods for printing and plotting are available for objects returned by GenericML(). Parallel computing is supported.
Toolbox for various enrichment analysis methods and quantification of uncertainty of gene sets, Schmid et al. (2016) <doi:10.1093/bioinformatics/btw030>.
Focuses on data collecting, analyzing and visualization in green finance and environmental risk research and analysis. Main function includes environmental data collecting from official websites such as MEP (Ministry of Environmental Protection of China, <https://www.mee.gov.cn>), water related projects identification and environmental data visualization.
This package provides a collection of palettes and themes for ggplot2', offering a light, pastel aesthetic. Syntax follows the viridis package.
Conducts hierarchical partitioning to calculate individual contributions of each predictor towards adjusted R2 and explained deviance for generalized additive models based on output of gam() and bam() in mgcv package, applying the algorithm in this paper: Lai(2024) <doi:10.1016/j.pld.2024.06.002>.
This package implements a geographically weighted partial correlation which is an extension from gwss() function in the GWmodel package (Percival and Tsutsumida (2017) <doi:10.1553/giscience2017_01_s36>).