Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimation, forecasting, and simulation of generalized autoregressive score (GAS) models of Creal, Koopman, and Lucas (2013) <doi:10.1002/jae.1279> and Harvey (2013) <doi:10.1017/cbo9781139540933>. Model specification allows for various data types and distributions, different parametrizations, exogenous variables, joint and separate modeling of exogenous variables and dynamics, higher score and autoregressive orders, custom and unconditional initial values of time-varying parameters, fixed and bounded values of coefficients, and missing values. Model estimation is performed by the maximum likelihood method.
This package implements GINA-X, a genome-wide iterative fine-mapping method designed for non-Gaussian traits. It supports the identification of credible sets of genetic variants.
Fit a geographically weighted logistic elastic net regression. Detailed explanations can be found in Yoneoka et al. (2016): New algorithm for constructing area-based index with geographical heterogeneities and variable selection: An application to gastric cancer screening <doi:10.1038/srep26582>.
Geoms for placing arrowheads at multiple points along a segment, not just at the end; position function to shift starts and ends of arrows to avoid exactly intersecting points.
This package provides tools for quantitative analysis in gender studies, including functions to calculate various gender inequality metrics such as the Gender Pay Gap, Gender Inequality Index (GII), Gender Development Index (GDI), and Gender Empowerment Measure (GEM). Also includes extracted secondary example datasets for practice and learning purposes, which were obtained from the UNDP Human Development Reports Data Center and the World Bank Gender Data Portal by the author the dataset is available on <doi:10.34740/kaggle/dsv/6359326>. References: Miller, Kevin; Vagins, Deborah J. (2021) <https://eric.ed.gov/?id=ED596219>. Jacques Charmes & Saskia Wieringa (2003) <doi:10.1080/1464988032000125773>. Gaëlle Ferrant (2010) <https://shs.hal.science/halshs-00462463/>.
The gap encodes the distance between clusters and improves interpretation of cluster heatmaps. The gaps can be of the same distance based on a height threshold to cut the dendrogram. Another option is to vary the size of gaps based on the distance between clusters.
This package provides tools to measure the reliability of an Information Retrieval test collection. It allows users to estimate reliability using Generalizability Theory and map those estimates onto well-known indicators such as Kendall tau correlation or sensitivity.
This package provides a high performance interface to the Global Biodiversity Information Facility, GBIF'. In contrast to rgbif', which can access small subsets of GBIF data through web-based queries to a central server, gbifdb provides enhanced performance for R users performing large-scale analyses on servers and cloud computing providers, providing full support for arbitrary SQL or dplyr operations on the complete GBIF data tables (now over 1 billion records, and over a terabyte in size). gbifdb accesses a copy of the GBIF data in parquet format, which is already readily available in commercial computing clouds such as the Amazon Open Data portal and the Microsoft Planetary Computer, or can be accessed directly without downloading, or downloaded to any server with suitable bandwidth and storage space. The high-performance techniques for local and remote access are described in <https://duckdb.org/why_duckdb> and <https://arrow.apache.org/docs/r/articles/fs.html> respectively.
Functionality for adding the geological timescale to bivariate plots.
An interface to the Gmail RESTful API. Allows access to your Gmail messages, threads, drafts and labels.
We consider the ultrahigh-dimensional and error-prone data. Our goal aims to estimate the precision matrix and identify the graphical structure of the random variables with measurement error corrected. We further adopt the estimated precision matrix to the linear discriminant function to do classification for multi-label classes.
This package provides a statistical disclosure control tool to protect tables by suppression using the Gaussian elimination secondary suppression algorithm (Langsrud, 2024) <doi:10.1007/978-3-031-69651-0_6>. A suggestion is to start by working with functions SuppressSmallCounts() and SuppressDominantCells(). These functions use primary suppression functions for the minimum frequency rule and the dominance rule, respectively. Novel functionality for suppression of disclosive cells is also included. General primary suppression functions can be supplied as input to the general working horse function, GaussSuppressionFromData(). Suppressed frequencies can be replaced by synthetic decimal numbers as described in Langsrud (2019) <doi:10.1007/s11222-018-9848-9>.
This package provides a ggplot2 extension providing an integrative framework for composable visualization, enabling the creation of complex multi-plot layouts such as insets, circular arrangements, and multi-panel compositions. Built on the grammar of graphics, it offers tools to align, stack, and nest plots, simplifying the construction of richly annotated figures for high-dimensional data contextsâ such as genomics, transcriptomics, and microbiome studiesâ by making it easy to link related plots, overlay clustering results, or highlight shared patterns.
This package provides an R interface to the GeoNetwork API (<https://geonetwork-opensource.org/#api>) allowing to upload and publish metadata in a GeoNetwork web-application and expose it to OGC CSW.
Train a Gaussian stochastic process model of an unknown function, possibly observed with error, via maximum likelihood or maximum a posteriori (MAP) estimation, run model diagnostics, and make predictions, following Sacks, J., Welch, W.J., Mitchell, T.J., and Wynn, H.P. (1989) "Design and Analysis of Computer Experiments", Statistical Science, <doi:10.1214/ss/1177012413>. Perform sensitivity analysis and visualize low-order effects, following Schonlau, M. and Welch, W.J. (2006), "Screening the Input Variables to a Computer Model Via Analysis of Variance and Visualization", <doi:10.1007/0-387-28014-6_14>.
Create interactive visualization charts to draw data in three dimensional graphs. The graphs can be included in Shiny apps and R markdown documents, or viewed from the R console and RStudio Viewer. Based on the vis.js Graph3d module and the htmlwidgets R package.
Help to the occasional R user for synthesis and enhanced graphical visualization of redundancy analysis (RDA) and principal component analysis (PCA) methods and objects. Inputs are : data frame, RDA (package vegan') and PCA (package FactoMineR') objects. Outputs are : synthesized results of RDA, displayed in console and saved in tables ; displayed and saved objects of PCA graphic visualization of individuals and variables projections with multiple graphic parameters.
The social network literature features numerous methods for assigning value to paths as a function of their ties. gretel systemizes these approaches, casting them as instances of a generalized path value function indexed by a penalty parameter. The package also calculates probabilistic path value and identifies optimal paths in either value framework. Finally, proximity matrices can be generated in these frameworks that capture high-order connections overlooked in primitive adjacency sociomatrices. Novel methods are described in Buch (2019) <https://davidbuch.github.io/analyzing-networks-with-gretel.html>. More traditional methods are also implemented, as described in Yang, Knoke (2001) <doi:10.1016/S0378-8733(01)00043-0>.
It can be necessary to limit the rate of execution of a loop or repeated function call e.g. to show or gather data only at particular intervals. This package includes two methods for limiting this execution rate; speed governors and timers. A speed governor will insert pauses during execution to meet a user-specified loop time. Timers are alarm clocks which will indicate whether a certain time has passed. These mechanisms are implemented in C to minimize processing overhead.
Integrating applied psychological and psychometric methods into geographical analysis. With the emergence of geo-referenced questionnaires, spatially explicit psychological and psychometric methods can offer a geographically contextualised approach that reflects latent traits and processes at a more local scale, leading to more tailored research and decision-making processes. The implemented methods include Geographically Weighted Cronbach's alpha and its bandwidth selection. See Zhang & Li (2025) <doi:10.1111/gean.70021>.
This package implements graphical extension with accuracy in parameter estimation (AIPE) on RMSEA for sample size planning in structural equation modeling based on Lin, T.-Z. & Weng, L.-J. (2014) <doi: 10.1080/10705511.2014.915380>. And, it can also implement AIPE on RMSEA and power analysis on RMSEA.
One can find single-stage and two-stage designs for a phase II single-arm study with either efficacy or safety/toxicity endpoints as described in Kim and Wong (2019) <doi:10.29220/CSAM.2019.26.2.163>.
The Greymodels Shiny app is an interactive interface for statistical modelling and forecasting using grey-based models. It covers several state-of-the-art univariate and multivariate grey models. A user friendly interface allows users to easily compare the performance of different models for prediction and among others, visualize graphical plots of predicted values within user chosen confidence intervals. Chang, C. (2019) <doi:10.24818/18423264/53.1.19.11>, Li, K., Zhang, T. (2019) <doi:10.1007/s12667-019-00344-0>, Ou, S. (2012) <doi:10.1016/j.compag.2012.03.007>, Li, S., Zhou, M., Meng, W., Zhou, W. (2019) <doi:10.1080/23307706.2019.1666310>, Xie, N., Liu, S. (2009) <doi:10.1016/j.apm.2008.01.011>, Shao, Y., Su, H. (2012) <doi:10.1016/j.aasri.2012.06.003>, Xie, N., Liu, S., Yang, Y., Yuan, C. (2013) <doi:10.1016/j.apm.2012.10.037>, Li, S., Miao, Y., Li, G., Ikram, M. (2020) <doi:10.1016/j.matcom.2019.12.020>, Che, X., Luo, Y., He, Z. (2013) <doi:10.4028/www.scientific.net/AMM.364.207>, Zhu, J., Xu, Y., Leng, H., Tang, H., Gong, H., Zhang, Z. (2016) <doi:10.1109/appeec.2016.7779929>, Luo, Y., Liao, D. (2012) <doi:10.4028/www.scientific.net/AMR.507.265>, Bilgil, H. (2020) <doi:10.3934/math.2021091>, Li, D., Chang, C., Chen, W., Chen, C. (2011) <doi:10.1016/j.apm.2011.04.006>, Chen, C. (2008) <doi:10.1016/j.chaos.2006.08.024>, Zhou, W., Pei, L. (2020) <doi:10.1007/s00500-019-04248-0>, Xiao, X., Duan, H. (2020) <doi:10.1016/j.engappai.2019.103350>, Xu, N., Dang, Y. (2015) <doi:10.1155/2015/606707>, Chen, P., Yu, H.(2014) <doi:10.1155/2014/242809>, Zeng, B., Li, S., Meng, W., Zhang, D. (2019) <doi:10.1371/journal.pone.0221333>, Liu, L., Wu, L. (2021) <doi:10.1016/j.apm.2020.08.080>, Hu, Y. (2020) <doi:10.1007/s00500-020-04765-3>, Zhou, P., Ang, B., Poh, K. (2006) <doi:10.1016/j.energy.2005.12.002>, Cheng, M., Li, J., Liu, Y., Liu, B. (2020) <doi:10.3390/su12020698>, Wang, H., Wang, P., Senel, M., Li, T. (2019) <doi:10.1155/2019/9049815>, Ding, S., Li, R. (2020) <doi:10.1155/2020/4564653>, Zeng, B., Li, C. (2018) <doi:10.1016/j.cie.2018.02.042>, Xie, N., Liu, S. (2015) <doi:10.1109/JSEE.2015.00013>, Zeng, X., Yan, S., He, F., Shi, Y. (2019) <doi:10.1016/j.apm.2019.11.032>.
This package provides functions to read in the geometry format under the Neuroimaging Informatics Technology Initiative ('NIfTI'), called GIFTI <https://www.nitrc.org/projects/gifti/>. These files contain surfaces of brain imaging data.