Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Generalizes application of gray-level co-occurrence matrix (GLCM) metrics to objects outside of images. The current focus is to apply GLCM metrics to the study of biological networks and fitness landscapes that are used in studying evolutionary medicine and biology, particularly the evolution of cancer resistance. The package was developed as part of the author's publication in Physics in Medicine and Biology Barker-Clarke et al. (2023) <doi:10.1088/1361-6560/ace305>. A general reference to learn more about mathematical oncology can be found at Rockne et al. (2019) <doi:10.1088/1478-3975/ab1a09>.
This package provides a fast and flexible general-purpose implementation of Particle Swarm Optimization (PSO) and Differential Evolution (DE) for solving global minimization problems is provided. It is designed to handle complex optimization tasks with nonlinear, non-differentiable, and multi-modal objective functions defined by users. There are five types of PSO variants: Particle Swarm Optimization (PSO, Eberhart & Kennedy, 1995) <doi:10.1109/MHS.1995.494215>, Quantum-behaved particle Swarm Optimization (QPSO, Sun et al., 2004) <doi:10.1109/CEC.2004.1330875>, Locally convergent rotationally invariant particle swarm optimization (LcRiPSO, Bonyadi & Michalewicz, 2014) <doi:10.1007/s11721-014-0095-1>, Competitive Swarm Optimizer (CSO, Cheng & Jin, 2015) <doi:10.1109/TCYB.2014.2322602> and Double exponential particle swarm optimization (DExPSO, Stehlik et al., 2024) <doi:10.1016/j.asoc.2024.111913>. For the DE algorithm, six types in Storn, R. & Price, K. (1997) <doi:10.1023/A:1008202821328> are included: DE/rand/1, DE/rand/2, DE/best/1, DE/best/2, DE/rand_to-best/1 and DE/rand_to-best/2.
Calculates additive and dominance genetic relationship matrices and their inverses, in matrix and tabular-sparse formats. It includes functions for checking and processing pedigree, calculating inbreeding coefficients (Meuwissen & Luo, 1992 <doi:10.1186/1297-9686-24-4-305>), as well as functions to calculate the matrix of genetic group contributions (Q), and adding those contributions to the genetic merit of animals (Quaas (1988) <doi:10.3168/jds.S0022-0302(88)79691-5>). Calculation of Q is computationally extensive. There are computationally optimized functions to calculate Q.
This package contains functions for a two-stage multiple testing procedure for grouped hypothesis, aiming at controlling both the total posterior false discovery rate and within-group false discovery rate.
Scrapes football match shots data from Understat <https://understat.com/> and visualizes it using interactive plots: - A detailed shot map displaying the location, type, and xG value of shots taken by both teams. - An xG timeline chart showing the cumulative xG for each team over time, annotated with the details of scored goals.
This package provides functionality to create customizable volcano plots for visualizing differential gene expression analysis results. The package offers options to highlight genes of interest, adjust significance thresholds, customize colors, and add informative labels. Designed specifically for RNA-seq data analysis workflows.
The Greymodels Shiny app is an interactive interface for statistical modelling and forecasting using grey-based models. It covers several state-of-the-art univariate and multivariate grey models. A user friendly interface allows users to easily compare the performance of different models for prediction and among others, visualize graphical plots of predicted values within user chosen confidence intervals. Chang, C. (2019) <doi:10.24818/18423264/53.1.19.11>, Li, K., Zhang, T. (2019) <doi:10.1007/s12667-019-00344-0>, Ou, S. (2012) <doi:10.1016/j.compag.2012.03.007>, Li, S., Zhou, M., Meng, W., Zhou, W. (2019) <doi:10.1080/23307706.2019.1666310>, Xie, N., Liu, S. (2009) <doi:10.1016/j.apm.2008.01.011>, Shao, Y., Su, H. (2012) <doi:10.1016/j.aasri.2012.06.003>, Xie, N., Liu, S., Yang, Y., Yuan, C. (2013) <doi:10.1016/j.apm.2012.10.037>, Li, S., Miao, Y., Li, G., Ikram, M. (2020) <doi:10.1016/j.matcom.2019.12.020>, Che, X., Luo, Y., He, Z. (2013) <doi:10.4028/www.scientific.net/AMM.364.207>, Zhu, J., Xu, Y., Leng, H., Tang, H., Gong, H., Zhang, Z. (2016) <doi:10.1109/appeec.2016.7779929>, Luo, Y., Liao, D. (2012) <doi:10.4028/www.scientific.net/AMR.507.265>, Bilgil, H. (2020) <doi:10.3934/math.2021091>, Li, D., Chang, C., Chen, W., Chen, C. (2011) <doi:10.1016/j.apm.2011.04.006>, Chen, C. (2008) <doi:10.1016/j.chaos.2006.08.024>, Zhou, W., Pei, L. (2020) <doi:10.1007/s00500-019-04248-0>, Xiao, X., Duan, H. (2020) <doi:10.1016/j.engappai.2019.103350>, Xu, N., Dang, Y. (2015) <doi:10.1155/2015/606707>, Chen, P., Yu, H.(2014) <doi:10.1155/2014/242809>, Zeng, B., Li, S., Meng, W., Zhang, D. (2019) <doi:10.1371/journal.pone.0221333>, Liu, L., Wu, L. (2021) <doi:10.1016/j.apm.2020.08.080>, Hu, Y. (2020) <doi:10.1007/s00500-020-04765-3>, Zhou, P., Ang, B., Poh, K. (2006) <doi:10.1016/j.energy.2005.12.002>, Cheng, M., Li, J., Liu, Y., Liu, B. (2020) <doi:10.3390/su12020698>, Wang, H., Wang, P., Senel, M., Li, T. (2019) <doi:10.1155/2019/9049815>, Ding, S., Li, R. (2020) <doi:10.1155/2020/4564653>, Zeng, B., Li, C. (2018) <doi:10.1016/j.cie.2018.02.042>, Xie, N., Liu, S. (2015) <doi:10.1109/JSEE.2015.00013>, Zeng, X., Yan, S., He, F., Shi, Y. (2019) <doi:10.1016/j.apm.2019.11.032>.
Draw geospatial objects by clicks on the map. This packages can help data analyst who want to check their own geospatial hypothesis but has no ready-made geospatial objects.
The geographic dimension plays a fundamental role in multidimensional systems. To define a geographic dimension in a star schema, we need a table with attributes corresponding to the levels of the dimension. Additionally, we will also need one or more geographic layers to represent the data using this dimension. The goal of this package is to support the definition of geographic dimensions from layers of geographic information related to each other. It makes it easy to define relationships between layers and obtain the necessary data from them.
This package provides facilities to read, write and validate geographic metadata defined with ISO TC211 / OGC ISO geographic information metadata standards, and encoded using the ISO 19139 and ISO 19115-3 (XML) standard technical specifications. This includes ISO 19110 (Feature cataloguing), 19115 (dataset metadata), 19119 (service metadata) and 19136 (GML). Other interoperable schemas from the OGC are progressively supported as well, such as the Sensor Web Enablement (SWE) Common Data Model, the OGC GML Coverage Implementation Schema (GMLCOV), or the OGC GML Referenceable Grid (GMLRGRID).
Implementation of functions, which combines binomial calculation and data visualisation, to analyse the differences in publishing authorship by gender described in Day et al. (2020) <doi:10.1039/C9SC04090K>. It should only be used when self-reported gender is unavailable.
Symbolic calculation (addition or multiplication) and evaluation of multivariate polynomials with rational coefficients.
Computes the solution path for generalized lasso problems. Important use cases are the fused lasso over an arbitrary graph, and trend fitting of any given polynomial order. Specialized implementations for the latter two subproblems are given to improve stability and speed. See Taylor Arnold and Ryan Tibshirani (2016) <doi:10.1080/10618600.2015.1008638>.
Estimate natural mortality (M) throughout the life history for organisms, mainly fish and invertebrates, based on gnomonic interval approach proposed by Caddy (1996) <doi:10.1051/alr:1996023> and Martinez-Aguilar et al. (2005) <doi:10.1016/j.fishres.2004.04.008>. It includes estimation of duration of each gnomonic interval (life stage), the constant probability of death (G), and some basic plots.
The Global Biodiversity Information Facility ('GBIF', <https://www.gbif.org>) sources data from an international network of data providers, known as nodes'. Several of these nodes - the "living atlases" (<https://living-atlases.gbif.org>) - maintain their own web services using software originally developed by the Atlas of Living Australia ('ALA', <https://www.ala.org.au>). galah enables the R community to directly access data and resources hosted by GBIF and its partner nodes.
Represents generalized geometric ellipsoids with the "(U,D)" representation. It allows degenerate and/or unbounded ellipsoids, together with methods for linear and duality transformations, and for plotting. Thus ellipsoids are naturally extended to include lines, hyperplanes, points, cylinders, etc. This permits exploration of a variety to statistical issues that can be visualized using ellipsoids as discussed by Friendly, Fox & Monette (2013), Elliptical Insights: Understanding Statistical Methods Through Elliptical Geometry <doi:10.1214/12-STS402>.
This package provides automated downloading, parsing, cleaning, unit conversion and formatting of Global Surface Summary of the Day ('GSOD') weather data from the from the USA National Centers for Environmental Information ('NCEI'). Units are converted from from United States Customary System ('USCS') units to International System of Units ('SI'). Stations may be individually checked for number of missing days defined by the user, where stations with too many missing observations are omitted. Only stations with valid reported latitude and longitude values are permitted in the final data. Additional useful elements, saturation vapour pressure ('es'), actual vapour pressure ('ea') and relative humidity ('RH') are calculated from the original data using the improved August-Roche-Magnus approximation (Alduchov & Eskridge 1996) and included in the final data set. The resulting metadata include station identification information, country, state, latitude, longitude, elevation, weather observations and associated flags. For information on the GSOD data from NCEI', please see the GSOD readme.txt file available from, <https://www1.ncdc.noaa.gov/pub/data/gsod/readme.txt>.
Build a map of path-based geometry, this is a simple description of the number of parts in an object and their basic structure. Translation and restructuring operations for planar shapes and other hierarchical types require a data model with a record of the underlying relationships between elements. The gibble() function creates a geometry map, a simple record of the underlying structure in path-based hierarchical types. There are methods for the planar shape types in the sf and sp packages and for types in the trip and silicate packages.
Procedures for calculating variance components, study variation, percent study variation, and percent tolerance for gauge repeatability and reproducibility study. Methods included are ANOVA and Average / Range methods. Requires balanced study.
An R package for creating panels of diagnostic plots for residuals from a model using ggplot2 and plotly to analyze residuals and model assumptions from a variety of viewpoints. It also allows for the creation of interactive diagnostic plots.
Kernel regularized least squares, also known as kernel ridge regression, is a flexible machine learning method. This package implements this method by providing a smooth term for use with mgcv and uses random sketching to facilitate scalable estimation on large datasets. It provides additional functions for calculating marginal effects after estimation and for use with ensembles ('SuperLearning'), double/debiased machine learning ('DoubleML'), and robust/clustered standard errors ('sandwich'). Chang and Goplerud (2024) <doi:10.1017/pan.2023.27> provide further details.
This package provides a collection of commonly used visualizations of temporal and spatio-temporal health data including case counts, incidence rates, and covariates. The available plot types include time series, heatmaps, seasonality plots, maps and more. The package supports standard data transformations such as temporal and spatial aggregations, while offering extensive customization options for the resulting figures.
An S3 class groupedHyperframe that inherits from hyper data frame. Batch processes and aggregation of hyper column(s) over a nested grouping structure.
This package provides a procedure that uses target-decoy competition (or knockoffs) to reject multiple hypotheses in the presence of group structure. The procedure controls the false discovery rate (FDR) at a user-specified threshold.