Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Extended techniques for generalized linear models (GLMs), especially for binary responses, including parametric links and heteroscedastic latent variables.
Seamless integration between R and Goose AI capabilities including memory management, visualization enhancements, and workflow automation. Save R objects to Goose memory, apply Block branding to visualizations, and manage data science project workflows. For more information about Goose AI, see <https://github.com/block/goose>.
Reads data collected from wearable acceleratometers as used in sleep and physical activity research. Currently supports file formats: binary data from GENEActiv <https://activinsights.com/>, .bin-format from GENEA devices (not for sale), and .cwa-format from Axivity <https://axivity.com>. Further, it has functions for reading text files with epoch level aggregates from Actical', Fitbit', Actiwatch', ActiGraph', and PhilipsHealthBand'. Primarily designed to complement R package GGIR <https://CRAN.R-project.org/package=GGIR>.
Generalized Odds Rate Mixture Cure (GORMC) model is a flexible model of fitting survival data with a cure fraction, including the Proportional Hazards Mixture Cure (PHMC) model and the Proportional Odds Mixture Cure Model as special cases. This package fit the GORMC model with interval censored data.
This package provides efficient geospatial thinning algorithms to reduce the density of coordinate data while maintaining spatial relationships. Implements K-D Tree and brute-force distance-based thinning, as well as grid-based and precision-based thinning methods. For more information on the methods, see Elseberg et al. (2012) <https://hdl.handle.net/10446/86202>.
Uses ggplot2 to create normally distributed violin plots with specified means and standard deviations. This function can be useful in showing hypothetically normal distributions and confidence intervals.
This package provides a ggplot2 extension that adds specialised arrow geometry layers. It offers more arrow options than the standard grid arrows that are built-in many line-based geom layers.
Can be used for optimal transport between two-dimensional grids with respect to separable cost functions of l^p form. It utilizes the Frank-Wolfe algorithm to approximate so-called pivot measures: One-dimensional transport plans that fully describe the full transport, see G. Auricchio (2023) <doi:10.4171/RLM/1026>. For these, it offers methods for visualization and to extract the corresponding transport plans and costs. Additionally, related functions for one-dimensional optimal transport are available.
Geospatial data integration framework that merges raster, spatial polygon, and (dynamic) spatial points data into a spatial (panel) data frame at any geographical resolution.
Works with ggplot2 to add a Van Gogh color palette to the userâ s repertoire. It also has a function that work alongside ggplot2 to create more interesting data visualizations and add contextual information to the userâ s plots.
GEE estimation of the parameters in mean structures with possible correlation between the outcomes. User-specified mean link and variance functions are allowed, along with observation weighting. The M in the name geeM is meant to emphasize the use of the Matrix package, which allows for an implementation based fully in R.
This package provides tools for fitting sparse generalised linear mixed models with l0 regularisation. Selects fixed and random effects under the hierarchy constraint that fixed effects must precede random effects. Uses coordinate descent and local search algorithms to rapidly deliver near-optimal estimates. Gaussian and binomial response families are currently supported. For more details see Thompson, Wand, and Wang (2025) <doi:10.48550/arXiv.2506.20425>.
This package provides functions to assess the goodness of fit of binary, multinomial and ordinal logistic models. Included are the Hosmer-Lemeshow tests (binary, multinomial and ordinal) and the Lipsitz and Pulkstenis-Robinson tests (ordinal).
Decision curve analysis is a method for evaluating and comparing prediction models that incorporates clinical consequences, requires only the data set on which the models are tested, and can be applied to models that have either continuous or dichotomous results. The ggscidca package adds coloured bars of discriminant relevance to the traditional decision curve. Improved practicality and aesthetics. This method was described by Balachandran VP (2015) <doi:10.1016/S1470-2045(14)71116-7>.
Estimation and analysis of group-based multivariate trajectory models (Nagin, 2018 <doi:10.1177/0962280216673085>; Magrini, 2022 <doi:10.1007/s10182-022-00437-9>). The package implements an Expectation-Maximization (EM) algorithm allowing unbalanced panel and missing values, and provides several functionalities for prediction and graphical representation.
This package provides probability density functions and sampling algorithms for three key distributions from the General Unimodal Distribution (GUD) family: the Flexible Gumbel (FG) distribution, the Double Two-Piece (DTP) Student-t distribution, and the Two-Piece Scale (TPSC) Student-t distribution. Additionally, this package includes a function for Bayesian linear modal regression, leveraging these three distributions for model fitting. The details of the Bayesian modal regression model based on the GUD family can be found at Liu, Huang, and Bai (2024) <doi:10.1016/j.csda.2024.108012>.
This package provides tools for studying genotype-phenotype maps for bi-allelic loci underlying quantitative phenotypes. The 0.1 version is released in connection with the publication of Gjuvsland et al (2013) and implements basic line plots and the monotonicity measures for GP maps presented in the paper. Reference: Gjuvsland AB, Wang Y, Plahte E and Omholt SW (2013) Monotonicity is a key feature of genotype-phenotype maps. Frontier in Genetics 4:216 <doi:10.3389/fgene.2013.00216>.
In statistical modeling, there is a wide variety of regression models for categorical dependent variables (nominal or ordinal data); yet, there is no software embracing all these models together in a uniform and generalized format. Following the methodology proposed by Peyhardi, Trottier, and Guédon (2015) <doi:10.1093/biomet/asv042>, we introduce GLMcat', an R package to estimate generalized linear models implemented under the unified specification (r, F, Z). Where r represents the ratio of probabilities (reference, cumulative, adjacent, or sequential), F the cumulative cdf function for the linkage, and Z, the design matrix. The package accompanies the paper "GLMcat: An R Package for Generalized Linear Models for Categorical Responses" in the Journal of Statistical Software, Volume 114, Issue 9 (see <doi:10.18637/jss.v114.i09>).
Sparse large Directed Acyclic Graphs learning with a combination of a convex program and a tailored genetic algorithm (see Champion et al. (2017) <https://hal.archives-ouvertes.fr/hal-01172745v2/document>).
This package provides tools for applying the Bayesian Gower agreement methodology (presented in the package vignette) to nominal or ordinal data. The framework can accommodate any number of units, any number of coders, and missingness; and can handle both one-way and two-way random study designs. Influential units and/or coders can be identified easily using leave-one-out statistics.
The method aims to identify important factors in screening experiments by aggregation over random models as studied in Singh and Stufken (2022) <doi:10.48550/arXiv.2205.13497>. This package provides functions to run the Gauss-Dantzig selector on screening experiments when interactions may be affecting the response. Currently, all functions require each factor to be at two levels coded as +1 and -1.
Uses jackknife and bootstrap methods to quantify the sampling uncertainty in goodness-of-fit statistics. Full details are in Clark et al. (2021), "The abuse of popular performance metrics in hydrologic modeling", Water Resources Research, <doi:10.1029/2020WR029001>.
Download geyser eruption and observation data from the GeyserTimes site (<https://geysertimes.org>) and optionally store it locally. The vignette shows a simple analysis of downloading, accessing, and summarizing the data.
This package provides functions to compute generalized eigenvalues and eigenvectors, the generalized Schur decomposition and the generalized Singular Value Decomposition of a matrix pair, using Lapack routines.