Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Visualise the results of F test to compare two variances, Student's t-test, test of equal or given proportions, Pearson's chi-squared test for count data and test for association/correlation between paired samples.
Reads annual and quarterly financial reports from companies traded at B3, the Brazilian exchange <https://www.b3.com.br/>. All data is downloaded and imported from CVM's public ftp site <https://dados.cvm.gov.br/dados/CIA_ABERTA/>.
Define and compute with generalized spherical distributions - multivariate probability laws that are specified by a star shaped contour (directional behavior) and a radial component. The methods are described in Nolan (2016) <doi:10.1186/s40488-016-0053-0>.
This package provides Generalized Inferences based on exact distributions and exact probability statements for mixed effect models, provided by such papers as Weerahandi and Yu (2020) <doi:10.1186/s40488-020-00105-w> under the widely used Compound Symmetric Covariance structure. The package returns the estimation of the coefficients in random and fixed part of the mixed models by generalized inference.
This package infers state-recorded gender categories from first names and dates of birth using historical datasets. By using these datasets instead of lists of male and female names, this package is able to more accurately infer the gender of a name, and it is able to report the probability that a name was male or female. GUIDELINES: This method must be used cautiously and responsibly. Please be sure to see the guidelines and warnings about usage in the README or the package documentation. See Blevins and Mullen (2015) <http://www.digitalhumanities.org/dhq/vol/9/3/000223/000223.html>.
Parameter estimation and prediction of Gaussian Process Classifier models as described in Bachoc et al. (2020) <doi:10.1007/S10898-020-00920-0>. Important functions : gpcm(), predict.gpcm(), update.gpcm().
The accurate annotation of genes and Quantitative Trait Loci (QTLs) located within candidate markers and/or regions (haplotypes, windows, CNVs, etc) is a crucial step the most common genomic analyses performed in livestock, such as Genome-Wide Association Studies or transcriptomics. The Genomic Annotation in Livestock for positional candidate LOci (GALLO) is an R package designed to provide an intuitive and straightforward environment to annotate positional candidate genes and QTLs from high-throughput genetic studies in livestock. Moreover, GALLO allows the graphical visualization of gene and QTL annotation results, data comparison among different grouping factors (e.g., methods, breeds, tissues, statistical models, studies, etc.), and QTL enrichment in different livestock species including cattle, pigs, sheep, and chicken, among others.
Defines window or bin boundaries for the analysis of genomic data. Boundaries are based on the inflection points of a cubic smoothing spline fitted to the raw data. Along with defining boundaries, a technique to evaluate results obtained from unequally-sized windows is provided. Applications are particularly pertinent for, though not limited to, genome scans for selection based on variability between populations (e.g. using Wright's fixations index, Fst, which measures variability in subpopulations relative to the total population).
Graph clustering using an agglomerative algorithm to maximize the integrated classification likelihood criterion and a mixture of stochastic block models. The method is described in the article "Model-based clustering of multiple networks with a hierarchical algorithm" by T. Rebafka (2022) <arXiv:2211.02314>.
Calculates Agresti's generalized odds ratios. For a randomly selected pair of observations from two groups, calculates the odds that the second group will have a higher scoring outcome than that of the first group. Package provides hypothesis testing for if this odds ratio is significantly different to 1 (equal chance).
This package implements a one-sector Armington-CES gravity model with general equilibrium (GE) effects. This model is designed to analyze international and domestic trade by capturing the impacts of trade costs and policy changes within a general equilibrium framework. Additionally, it includes a local parameter to run simulations on productivity. The package provides functions for calibration, simulation, and analysis of the model.
An interactive document on the topic of goodness of fit analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://predanalyticssessions1.shinyapps.io/ChiSquareGOF/>.
Segmentation and classification procedures for data from the Activinsights GENEActiv <https://activinsights.com/technology/geneactiv/> accelerometer that provides the user with a model to guess behaviour from test data where behaviour is missing. Includes a step counting algorithm, a function to create segmented data with custom features and a function to use recursive partitioning provided in the function rpart() of the rpart package to create classification models.
Estimation of generalized linear models with correlated/clustered observations by use of generalized estimating equations (GEE). See e.g. Halekoh and Højsgaard, (2005, <doi:10.18637/jss.v015.i02>), for details. Several types of clustering are supported, including exchangeable variance structures, AR1 structures, M-dependent, user-specified variance structures and more. The model fitting computations are performed using modified code from the geeM package, while the interface and output objects have been written to resemble the geepack package. The package also contains additional tools for working with and inspecting results from the geepack package, e.g. a confint method for geeglm objects from geepack'.
Estimation of the generalized beta distribution of the second kind (GB2) and related models using grouped data in form of income shares. The GB2 family is a general class of distributions that provides an accurate fit to income data. GB2group includes functions to estimate the GB2, the Singh-Maddala, the Dagum, the Beta 2, the Lognormal and the Fisk distributions. GB2group deploys two different econometric strategies to estimate these parametric distributions, the equally weighted minimum distance (EWMD) estimator and the optimally weighted minimum distance (OMD) estimator. Asymptotic standard errors are reported for the OMD estimates. Standard errors of the EWMD estimates are obtained by Monte Carlo simulation. See Jorda et al. (2018) <arXiv:1808.09831> for a detailed description of the estimation procedure.
Defines classes and methods that can be used to implement genetic algorithms for feature selection. The idea is that we want to select a fixed number of features to combine into a linear classifier that can predict a binary outcome, and can use a genetic algorithm heuristically to select an optimal set of features.
GitHub apps provide a powerful way to manage fine grained programmatic access to specific git repositories, without having to create dummy users, and which are safer than a personal access token for automated tasks. This package extends the gh package to let you authenticate and interact with GitHub <https://docs.github.com/en/rest/overview> in R as an app.
This is an add-on package to gamlss'. The purpose of this package is to allow users to fit GAMLSS (Generalised Additive Models for Location Scale and Shape) models when the response variable is defined either in the intervals [0,1), (0,1] and [0,1] (inflated at zero and/or one distributions), or in the positive real line including zero (zero-adjusted distributions). The mass points at zero and/or one are treated as extra parameters with the possibility to include a linear predictor for both. The package also allows transformed or truncated distributions from the GAMLSS family to be used for the continuous part of the distribution. Standard methods and GAMLSS diagnostics can be used with the resulting fitted object.
API bindings to the Geospatial Data Abstraction Library ('GDAL', <https://gdal.org>). Implements the GDAL Raster and Vector Data Models. Bindings are implemented with Rcpp modules. Exposed C++ classes and stand-alone functions wrap much of the GDAL API and provide additional functionality. Calling signatures resemble the native C, C++ and Python APIs provided by the GDAL project. Class GDALRaster encapsulates a GDALDataset and its raster band objects. Class GDALVector encapsulates an OGRLayer and the GDALDataset that contains it. Initial bindings are provided to the unified gdal command line interface added in GDAL 3.11. C++ stand-alone functions provide bindings to most GDAL "traditional" raster and vector utilities, including OGR facilities for vector geoprocessing, several algorithms, as well as the Geometry API ('GEOS via GDAL headers), the Spatial Reference Systems API, and methods for coordinate transformation. Bindings to the Virtual Systems Interface ('VSI') API implement standard file system operations abstracted for URLs, cloud storage services, Zip'/'GZip'/'7z'/'RAR', in-memory files, as well as regular local file systems. This provides a single interface for operating on file system objects that works the same for any storage backend. A custom raster calculator evaluates a user-defined R expression on a layer or stack of layers, with pixel x/y available as variables in the expression. Raster combine() identifies and counts unique pixel combinations across multiple input layers, with optional raster output of the pixel-level combination IDs. Basic plotting capability is provided for raster and vector display. gdalraster leans toward minimalism and the use of simple, lightweight objects for holding raw data. Currently, only minimal S3 class interfaces have been implemented for selected R objects that contain spatial data. gdalraster may be useful in applications that need scalable, low-level I/O, or prefer a direct GDAL API.
This package implements the Generalized Method of Wavelet Moments with Exogenous Inputs estimator (GMWMX) presented in Cucci, D. A., Voirol, L., Kermarrec, G., Montillet, J. P., and Guerrier, S. (2023) <doi:10.1007/s00190-023-01702-8>. The GMWMX estimator allows to estimate functional and stochastic parameters of linear models with correlated residuals. The gmwmx package provides functions to estimate, compare and analyze models, utilities to load and work with Global Navigation Satellite System (GNSS) data as well as methods to compare results with the Maximum Likelihood Estimator (MLE) implemented in Hector.
This package provides tools to interact nicely with the Genius API <https://docs.genius.com/>. Search hosted content, extract associated metadata and retrieve lyrics with ease.
These are GreedyExperimentalDesign Java dependency libraries. Note: this package has no functionality of its own and should not be installed as a standalone package without GreedyExperimentalDesign.
GPU'/CPU Benchmarking on Debian-package based systems This package benchmarks performance of a few standard linear algebra operations (such as a matrix product and QR, SVD and LU decompositions) across a number of different BLAS libraries as well as a GPU implementation. To do so, it takes advantage of the ability to plug and play different BLAS implementations easily on a Debian and/or Ubuntu system. The current version supports - Reference BLAS ('refblas') which are un-accelerated as a baseline - Atlas which are tuned but typically configure single-threaded - Atlas39 which are tuned and configured for multi-threaded mode - Goto Blas which are accelerated and multi-threaded - Intel MKL which is a commercial accelerated and multithreaded version. As for GPU computing, we use the CRAN package - gputools For Goto Blas', the gotoblas2-helper script from the ISM in Tokyo can be used. For Intel MKL we use the Revolution R packages from Ubuntu 9.10.
This package provides functions and data are provided that support a course that emphasizes statistical issues of inference and generalizability. The functions are designed to make it straightforward to illustrate the use of cross-validation, the training/test approach, simulation, and model-based estimates of accuracy. Methods considered are Generalized Additive Modeling, Linear and Quadratic Discriminant Analysis, Tree-based methods, and Random Forests.