Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements a one-sector Armington-CES gravity model with general equilibrium (GE) effects. This model is designed to analyze international and domestic trade by capturing the impacts of trade costs and policy changes within a general equilibrium framework. Additionally, it includes a local parameter to run simulations on productivity. The package provides functions for calibration, simulation, and analysis of the model.
Several methods may be found for selecting a subset of regressors from a set of k candidate variables in multiple linear regression. One possibility is to evaluate all possible regression models and comparing them using Mallows's Cp statistic (Cp) according to Gilmour original study. Full model is calculated, all possible combinations of regressors are generated, adjusted Cp for each submodel are computed, and the submodel with the minimum adjusted value Cp (ModelMin) is calculated. To identify the final model, the package applies a sequence of hypothesis tests on submodels nested within ModelMin, following the approach outlined in Gilmour's original paper. For more details see the help of the function final_model() and the original study (1996) <doi:10.2307/2348411>.
Create network-style visualizations of pairwise relationships using custom edge glyphs built on top of ggplot2'. The package supports both statistical and non-statistical data and allows users to represent directed relationships. This enables clear, publication-ready graphics for exploring and communicating relational structures in a wide range of domains. The method was first used in Abu-Akel et al. (2021) <doi:10.1371/journal.pone.0245100>. Code is released under the MIT License; included datasets are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0).
This package provides tools for solving common geocaching puzzle types, and other Geocaching-related tasks.
This package provides routines to estimate the Mixture Transition Distribution Model based on Raftery (1985) <http://www.jstor.org/stable/2345788> and Nicolau (2014) <doi:10.1111/sjos.12087> specifications, for multivariate data. Additionally, provides a function for the estimation of a new model for multivariate non-homogeneous Markov chains. This new specification, Generalized Multivariate Markov Chains (GMMC) was proposed by Carolina Vasconcelos and Bruno Damasio and considers (continuous or discrete) covariates exogenous to the Markov chain.
This package implements various Gifi methods in a user-friendly way: categorical principal component analysis (princals), multiple correspondence analysis (homals), monotone regression analysis (morals).
The gene-set distance analysis of omic data is implemented by generalizing distance correlations to evaluate the association of a gene set with categorical and censored event-time variables.
This package implements a geographically weighted partial correlation which is an extension from gwss() function in the GWmodel package (Percival and Tsutsumida (2017) <doi:10.1553/giscience2017_01_s36>).
Performing goodness-of-fit tests for stochastic block models used to fit network data. Among the three variants discussed in Karwa et al. (2023) <doi:10.1093/jrsssb/qkad084>, goodness-of-fit test has been performed for the Erdos-Renyi (ER) and Beta versions.
This package provides methods and tools for the analysis of Genome Wide Identity-by-Descent ('gwid') mapping data, focusing on testing whether there is a higher occurrence of Identity-By-Descent (IBD) segments around potential causal variants in cases compared to controls, which is crucial for identifying rare variants. To enhance its analytical power, gwid incorporates a Sliding Window Approach, allowing for the detection and analysis of signals from multiple Single Nucleotide Polymorphisms (SNPs).
An implementation of functions to display Greek letters on the RStudio (include subscript and superscript indexes) and RGui (without subscripts and only with superscript 1, 2 or 3; because RGui doesn't support printing the corresponding Unicode characters as a string: all subscripts ranging from 0 to 9 and superscripts equal to 0, 4, 5, 6, 7, 8 or 9). The functions in this package do not work properly on the R console. Characters are used via Unicode and encoded as UTF-8 to ensure that they can be viewed on all operating systems. Other characters related to mathematics are included, such as the infinity symbol. All this accessible from very simple commands. This is a package that can be used for teaching purposes, the statistical notation for hypothesis testing can be written from this package and so it is possible to build a course from the swirlify package. Another utility of this package is to create new summary functions that contain the functional form of the model adjusted with the Greek letters, thus making the transition from statistical theory to practice easier. In addition, it is a natural extension of the clisymbols package.
This package provides functions to compute the Generalized Dynamic Principal Components introduced in Peña and Yohai (2016) <DOI:10.1080/01621459.2015.1072542>. The implementation includes an automatic procedure proposed in Peña, Smucler and Yohai (2020) <DOI:10.18637/jss.v092.c02> for the identification of both the number of lags to be used in the generalized dynamic principal components as well as the number of components required for a given reconstruction accuracy.
This package provides a ggplot2 extension centered on map visualization of China and the globe. Provides customizable projections, boundary styles, coordinate grids, scale bars, and buffer zones for thematic maps, suitable for spatial data analysis and cartographic visualization.
This package provides a collection of functions to perform Gaussian quadrature with different weight functions corresponding to the orthogonal polynomials in package orthopolynom. Examples verify the orthogonality and inner products of the polynomials.
Extensions to ggplot2 providing low-level debug tools: statistics and geometries echoing their data argument. Layer manipulation: deletion, insertion, extraction and reordering of layers. Deletion of unused variables from the data object embedded in "ggplot" objects.
This package provides tools for applying the Bayesian Gower agreement methodology (presented in the package vignette) to nominal or ordinal data. The framework can accommodate any number of units, any number of coders, and missingness; and can handle both one-way and two-way random study designs. Influential units and/or coders can be identified easily using leave-one-out statistics.
This package performs linear regression with correlated predictors, responses and correlated measurement errors in predictors and responses, correcting for biased caused by these.
You can use this function to easily draw a combined histogram and restricted cubic spline. The function draws the graph through ggplot2'. RCS fitting requires the use of the rcs() function of the rms package. Can fit cox regression, logistic regression. This method was described by Per Kragh (2003) <doi:10.1002/sim.1497>.
This package provides a framework for creating plots with glowing points.
An (aspirational) collection of additional geometries and statistics for ggplot2'.
This package provides an interface to the GenderAPI.io web service (<https://www.genderapi.io>) for determining gender from personal names, email addresses, or social media usernames. Functions are available to submit single or batch queries and retrieve additional information such as accuracy scores and country-specific gender predictions. This package simplifies integration of GenderAPI.io into R workflows for data cleaning, user profiling, and analytics tasks.
Derives group sequential clinical trial designs and describes their properties. Particular focus on time-to-event, binary, and continuous outcomes. Largely based on methods described in Jennison, Christopher and Turnbull, Bruce W., 2000, "Group Sequential Methods with Applications to Clinical Trials" ISBN: 0-8493-0316-8.
It allows running gretl (<http://gretl.sourceforge.net/index.html>) program from R, R Markdown and Quarto. gretl ('Gnu Regression, Econometrics', and Time-series Library) is a statistical software for Econometric analysis. This package does not only integrate gretl and R but also serves as a gretl Knit-Engine for knitr package. Write all your gretl commands in R', R Markdown chunk.
Efficient computation of likelihoods in design-based choice response time models, including the Decision Diffusion Model, is supported. The package enables rapid evaluation of likelihood functions for both single- and multi-subject models across trial-level data. It also offers fast initialisation of starting parameters for genetic sampling with many Markov chains, facilitating estimation in complex models typically found in experimental psychology and behavioural science. These optimisations help reduce computational overhead in large-scale model fitting tasks.