Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Solves the problem of identifying the densest submatrix in a given or sampled binary matrix, Bombina et al. (2019) <arXiv:1904.03272>.
Computation of the alpha-shape and alpha-convex hull of a given sample of points in the plane. The concepts of alpha-shape and alpha-convex hull generalize the definition of the convex hull of a finite set of points. The programming is based on the duality between the Voronoi diagram and Delaunay triangulation. The package also includes a function that returns the Delaunay mesh of a given sample of points and its dual Voronoi diagram in one single object.
Fits from simple regression to highly customizable deep neural networks either with gradient descent or metaheuristic, using automatic hyper parameters tuning and custom cost function. A mix inspired by the common tricks on Deep Learning and Particle Swarm Optimization.
In total it has 7 functions, three for calculating machine calibration, which determine application rate (L/ha), nozzle flow (L/min) and amount of product (L or kg) to be added. to the tank with each sprayer filling. Two functions for graphs of the flow distribution of the nozzles (L/min) in the application bar and, of the temporal variability of the meteorological conditions (air temperature, relative humidity of the air and wind speed). Two functions to determine the spray deposit (uL/cm2), through the methodology called spectrophotometry, with the aid of bright blue (Palladini, L.A., Raetano, C.G., Velini, E.D. (2005), <doi:10.1590/S0103-90162005000500005>) or metallic markers (Chaim, A., Castro, V.L.S.S., Correles, F.M., Galvão, J.A.H., Cabral, O.M.R., Nicolella, G. (1999), <doi:10.1590/S0100-204X1999000500003>). The package supports the analysis and representation of information, using a single free software that meets the most diverse areas of activity in application technology.
This package implements the Arellano-Bond estimation method combined with LASSO for dynamic linear panel models. See Chernozhukov et al. (2024) "Arellano-Bond LASSO Estimator for Dynamic Linear Panel Models". arXiv preprint <doi:10.48550/arXiv.2402.00584>.
Enables sampling from arbitrary distributions if the log density is known up to a constant; a common situation in the context of Bayesian inference. The implemented sampling algorithm was proposed by Vihola (2012) <DOI:10.1007/s11222-011-9269-5> and achieves often a high efficiency by tuning the proposal distributions to a user defined acceptance rate.
This package provides a comprehensive set of tools for descriptive statistics, graphical data exploration, outlier detection, homoscedasticity testing, and multiple comparison procedures. Includes manual implementations of Levene's test, Bartlett's test, and the Fligner-Killeen test, as well as post hoc comparison methods such as Tukey, Scheffé, Games-Howell, Brunner-Munzel, and others. This version introduces two new procedures: the Jonckheere-Terpstra trend test and the Jarque-Bera test with Glinskiy's (2024) correction. Designed for use in teaching, applied statistical analysis, and reproducible research. Additionally you can find a post hoc Test Planner, which helps you to make a decision on which procedure is most suitable.
This package provides a framework for automated machine learning. Concretely, the focus is on the optimisation of bagging workflows. A bagging workflows is composed by three phases: (i) generation: which and how many predictive models to learn; (ii) pruning: after learning a set of models, the worst ones are cut off from the ensemble; and (iii) integration: how the models are combined for predicting a new observation. autoBagging optimises these processes by combining metalearning and a learning to rank approach to learn from metadata. It automatically ranks 63 bagging workflows by exploiting past performance and dataset characterization. A complete description of the method can be found in: Pinto, F., Cerqueira, V., Soares, C., Mendes-Moreira, J. (2017): "autoBagging: Learning to Rank Bagging Workflows with Metalearning" arXiv preprint arXiv:1706.09367.
This package provides methods for processing corporate balance sheets with a focus on the Brazilian reporting format. Includes data standardization, classification by accounting categories, and aggregation of values. Supports accounting and financial analyses of companies, improving efficiency and ensuring reproducibility of empirical studies.
It can sometimes be difficult to ascertain when some events (such as property crime) occur because the victim is not present when the crime happens. As a result, police databases often record a start (or from') date and time, and an end (or to') date and time. The time span between these date/times can be minutes, hours, or sometimes days, hence the term Aoristic'. Aoristic is one of the past tenses in Greek and represents an uncertain occurrence in time. For events with a location describes with either a latitude/longitude, or X,Y coordinate pair, and a start and end date/time, this package generates an aoristic data frame with aoristic weighted probability values for each hour of the week, for each observation. The coordinates are not necessary for the program to calculate aoristic weights; however, they are part of this package because a spatial component has been integral to aoristic analysis from the start. Dummy coordinates can be introduced if the user only has temporal data. Outputs include an aoristic data frame, as well as summary graphs and displays. For more information see: Ratcliffe, JH (2002) Aoristic signatures and the temporal analysis of high volume crime patterns, Journal of Quantitative Criminology. 18 (1): 23-43. Note: This package replaces an original aoristic package (version 0.6) by George Kikuchi that has been discontinued with his permission.
This package provides a collection of datasets on the Alone survival TV series in tidy format. Included in the package are 4 datasets detailing the survivors, their loadouts, episode details and season information.
This package provides a tool that "multiply imputes" missing data in a single cross-section (such as a survey), from a time series (like variables collected for each year in a country), or from a time-series-cross-sectional data set (such as collected by years for each of several countries). Amelia II implements our bootstrapping-based algorithm that gives essentially the same answers as the standard IP or EMis approaches, is usually considerably faster than existing approaches and can handle many more variables. Unlike Amelia I and other statistically rigorous imputation software, it virtually never crashes (but please let us know if you find to the contrary!). The program also generalizes existing approaches by allowing for trends in time series across observations within a cross-sectional unit, as well as priors that allow experts to incorporate beliefs they have about the values of missing cells in their data. Amelia II also includes useful diagnostics of the fit of multiple imputation models. The program works from the R command line or via a graphical user interface that does not require users to know R.
Adaptive Gauss Hermite Quadrature for Bayesian inference. The AGHQ method for normalizing posterior distributions and making Bayesian inferences based on them. Functions are provided for doing quadrature and marginal Laplace approximations, and summary methods are provided for making inferences based on the results. See Stringer (2021). "Implementing Adaptive Quadrature for Bayesian Inference: the aghq Package" <arXiv:2101.04468>.
Utilities for working with hourly air quality monitoring data with a focus on small particulates (PM2.5). A compact data model is structured as a list with two dataframes. A meta dataframe contains spatial and measuring device metadata associated with deployments at known locations. A data dataframe contains a datetime column followed by columns of measurements associated with each "device-deployment". Algorithms to calculate NowCast and the associated Air Quality Index (AQI) are defined at the US Environmental Projection Agency AirNow program: <https://document.airnow.gov/technical-assistance-document-for-the-reporting-of-daily-air-quailty.pdf>.
Acknowledge all contributors to a project via a single function call. The function appends to a README or other specified file(s) a table with names of all individuals who contributed via code or repository issues. The package also includes several additional functions to extract and quantify contributions to any repository.
Create, upload and run Acumos R models. Acumos (<https://www.acumos.org>) is a platform and open source framework intended to make it easy to build, share, and deploy AI apps. Acumos is part of the LF AI Foundation', an umbrella organization within The Linux Foundation'. With this package, user can create a component, and push it to an Acumos platform.
Targeted differential and global enrichment analysis of taxonomic rank by shared ASVs (Amplicon Sequence Variant), for high-throughput eDNA sequencing of fungi, bacteria, and metazoan. Actually works in two steps: I) Targeted differential analysis from QIIME2 data and II) Global analysis by Taxon Mann-Whitney U test analysis from targeted analysis (I) (I) Estimate variance-mean dependence in count/abundance ASVs data from high-throughput sequencing assays and test for differential represented ASVs based on a model using the negative binomial distribution. (II) NCBITaxon_MWU uses continuous measure of significance (such as fold-change or -log(p-value)) to identify NCBITaxon that are significantly enriches with either up- or down-represented ASVs. If the measure is binary (0 or 1) the script will perform a typical NCBITaxon enrichment analysis based Fisher's exact test: it will show NCBITaxon over-represented among the ASVs that have 1 as their measure. On the plot, different fonts are used to indicate significance and color indicates enrichment with either up (red) or down (blue) regulated ASVs. No colors are shown for binary measure analysis. The tree on the plot is hierarchical clustering of NCBITaxon based on shared ASVs. Categories with no branch length between them are subsets of each other. The fraction next to the category name indicates the fraction of good ASVs in it; good ASVs are the ones exceeding the arbitrary absValue cutoff (option in taxon_mwuPlot()). For Fisher's based test, specify absValue=0.5. This value does not affect statistics and is used for plotting only. The original idea was for genes differential expression analysis from Wright et al (2015) <doi:10.1186/s12864-015-1540-2>; adapted here for taxonomic analysis. The Anaconda package makes it possible to carry out these analyses by automatically creating several graphs and tables and storing them in specially created subfolders. You will need your QIIME2 pipeline output for each kingdom (eg; Fungi and/or Bacteria and/or Metazoan): i) taxonomy.tsv, ii) taxonomy_RepSeq.tsv, iii) ASV.tsv and iv) SampleSheet_comparison.txt (the latter being created by you).
Presents a series of molecular and genetic routines in the R environment with the aim of assisting in analytical pipelines before and after the use of asreml or another library to perform analyses such as Genomic Selection or Genome-Wide Association Analyses. Methods and examples are described in Gezan, Oliveira, Galli, and Murray (2022) <https://asreml.kb.vsni.co.uk/wp-content/uploads/sites/3/ASRgenomics_Manual.pdf>.
The real-life time series data are hardly pure linear or nonlinear. Merging a linear time series model like the autoregressive moving average (ARMA) model with a nonlinear neural network model such as the Long Short-Term Memory (LSTM) model can be used as a hybrid model for more accurate modeling purposes. Both the autoregressive integrated moving average (ARIMA) and autoregressive fractionally integrated moving average (ARFIMA) models can be implemented. Details can be found in Box et al. (2015, ISBN: 978-1-118-67502-1) and Hochreiter and Schmidhuber (1997) <doi:10.1162/neco.1997.9.8.1735>.
This package contains functions to implement automated covariate selection using methods described in the high-dimensional propensity score (HDPS) algorithm by Schneeweiss et.al. Covariate adjustment in real-world-observational-data (RWD) is important for for estimating adjusted outcomes and this can be done by using methods such as, but not limited to, propensity score matching, propensity score weighting and regression analysis. While these methods strive to statistically adjust for confounding, the major challenge is in selecting the potential covariates that can bias the outcomes comparison estimates in observational RWD (Real-World-Data). This is where the utility of automated covariate selection comes in. The functions in this package help to implement the three major steps of automated covariate selection as described by Schneeweiss et. al elsewhere. These three functions, in order of the steps required to execute automated covariate selection are, get_candidate_covariates(), get_recurrence_covariates() and get_prioritised_covariates(). In addition to these functions, a sample real-world-data from publicly available de-identified medical claims data is also available for running examples and also for further exploration. The original article where the algorithm is described by Schneeweiss et.al. (2009) <doi:10.1097/EDE.0b013e3181a663cc> .
Parse Autonomous Recording Unit (ARU) data and for sub-sampling recordings. Extract Metadata from your recordings, select a subset of recordings for interpretation, and prepare files for processing on the WildTrax <https://wildtrax.ca/> platform. Read and process metadata from recordings collected using the SongMeter and BAR-LT types of ARUs.
This package provides simple assertions with sensible defaults and customisable error messages. It offers convenient assertion call wrappers and a general assert function that can handle any condition. Default error messages are user friendly and easily customized with inline code evaluation and styling powered by the cli package.
Collect your data on digital marketing campaigns from Amazon Sp using the Windsor.ai API <https://windsor.ai/api-fields/>.
This package implements the Adaptive Multiple Importance Sampling (AMIS) algorithm, as described by Retkute et al. (2021, <doi:10.1214/21-AOAS1486>), to estimate key epidemiological parameters by combining outputs from a geostatistical model of infectious diseases (such as prevalence, incidence, or relative risk) with a disease transmission model. Utilising the resulting posterior distributions, the package enables forward projections at the local level.