Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Aids the programming of Clinical Data Standards Interchange Consortium (CDISC) compliant Ophthalmology Analysis Data Model (ADaM) datasets in R. ADaM datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team, 2021, <https://www.cdisc.org/standards/foundational/adam/adamig-v1-3-release-package>).
Supplies a set of functions to query air travel data for user- specified years and airports. Datasets include on-time flights, airlines, airports, planes, and weather.
This package performs statistical testing to compare predictive models based on multiple observations of the A statistic (also known as Area Under the Receiver Operating Characteristic Curve, or AUC). Specifically, it implements a testing method based on the equivalence between the A statistic and the Wilcoxon statistic. For more information, see Hanley and McNeil (1982) <doi:10.1148/radiology.143.1.7063747>.
This package implements persistent row and column annotations for R matrices. The annotations associated with rows and columns are preserved after subsetting, transposition, and various other matrix-specific operations. Intended use case is for storing and manipulating genomic datasets which typically consist of a matrix of measurements (like gene expression values) as well as annotations about rows (i.e. genomic locations) and annotations about columns (i.e. meta-data about collected samples). But annmatrix objects are also expected to be useful in various other contexts.
Manage dependencies during package development. This can retrieve all dependencies that are used in ".R" files in the "R/" directory, in ".Rmd" files in "vignettes/" directory and in roxygen2 documentation of functions. There is a function to update the "DESCRIPTION" file of your package with CRAN packages or any other remote package. All functions to retrieve dependencies of ".R" scripts and ".Rmd" or ".qmd" files can be used independently of a package development.
This package provides methods (<doi:10.7717/peerj.11534>) are provided of calibrating and predicting shifts in allele frequencies through redundancy analysis ('vegan::rda()') and generalized additive models ('mgcv::gam()'). Visualization functions for predicted changes in allele frequencies include shift.dot.ggplot()', shift.pie.ggplot()', shift.moon.ggplot()', shift.waffle.ggplot() and shift.surf.ggplot() that are made with input data sets that are prepared by helper functions for each visualization method. Examples in the documentation show how to prepare animated climate change graphics through a time series with the gganimate package. Function amova.rda() shows how Analysis of Molecular Variance can be directly conducted with the results from redundancy analysis.
This package provides a lightweight, dependency-free toolbox for pre-processing XY data from experimental methods (i.e. any signal that can be measured along a continuous variable). This package provides methods for baseline estimation and correction, smoothing, normalization, integration and peaks detection. Baseline correction methods includes polynomial fitting as described in Lieber and Mahadevan-Jansen (2003) <doi:10.1366/000370203322554518>, Rolling Ball algorithm after Kneen and Annegarn (1996) <doi:10.1016/0168-583X(95)00908-6>, SNIP algorithm after Ryan et al. (1988) <doi:10.1016/0168-583X(88)90063-8>, 4S Peak Filling after Liland (2015) <doi:10.1016/j.mex.2015.02.009> and more.
Fast processing of ArcGIS FeatureCollection protocol buffers in R. It is designed to work seamlessly with httr2 and integrates with sf'.
This package creates complex autoregressive distributed lag (ARDL) models and constructs the underlying unrestricted and restricted error correction model (ECM) automatically, just by providing the order. It also performs the bounds-test for cointegration as described in Pesaran et al. (2001) <doi:10.1002/jae.616> and provides the multipliers and the cointegrating equation. The validity and the accuracy of this package have been verified by successfully replicating the results of Pesaran et al. (2001) in Natsiopoulos and Tzeremes (2022) <doi:10.1002/jae.2919>.
Calculates concentration and dispersion in ordered rating scales. It implements various measures of concentration and dispersion to describe what researchers variably call agreement, concentration, consensus, dispersion, or polarization among respondents in ordered data. It also implements other related measures to classify distributions. In addition to a generic city-block based concentration measure and a generic dispersion measure, the package implements various measures, including van der Eijk's (2001) <DOI: 10.1023/A:1010374114305> measure of agreement A, measures of concentration by Leik, Tatsle and Wierman, Blair and Lacy, Kvalseth, Berry and Mielke, Reardon, and Garcia-Montalvo and Reynal-Querol. Furthermore, the package provides an implementation of Galtungs AJUS-system to classify distributions, as well as a function to identify the position of multiple modes.
Static code compilation of a shiny app given an R function (into ui.R and server.R files or into a shiny app object). See examples at <https://github.com/alekrutkowski/autoshiny>.
Another implementation of object-orientation in R. It provides syntactic sugar for the S4 class system and two alternative new implementations. One is an experimental version built around S4 and the other one makes it more convenient to work with lists as objects.
PCA done by eigenvalue decomposition of a data correlation matrix, here it automatically determines the number of factors by eigenvalue greater than 1 and it gives the uncorrelated variables based on the rotated component scores, Such that in each principal component variable which has the high variance are selected. It will be useful for non-statisticians in selection of variables. For more information, see the <http://www.ijcem.org/papers032013/ijcem_032013_06.pdf> web page.
This package provides the data sets used to build the ArchaeoPhases vignettes. The data sets were formerly distributed with ArchaeoPhases', however they exceed current CRAN policy for package size.
Extremely efficient procedures for fitting the entire group lasso and group elastic net regularization path for GLMs, multinomial, the Cox model and multi-task Gaussian models. Similar to the R package glmnet in scope of models, and in computational speed. This package provides R bindings to the C++ code underlying the corresponding Python package adelie'. These bindings offer a general purpose group elastic net solver, a wide range of matrix classes that can exploit special structure to allow large-scale inputs, and an assortment of generalized linear model classes for fitting various types of data. The package is an implementation of Yang, J. and Hastie, T. (2024) <doi:10.48550/arXiv.2405.08631>.
This package provides a novel interpretable machine learning-based framework to automate the development of a clinical scoring model for predefined outcomes. Our novel framework consists of six modules: variable ranking with machine learning, variable transformation, score derivation, model selection, domain knowledge-based score fine-tuning, and performance evaluation.The details are described in our research paper<doi:10.2196/21798>. Users or clinicians could seamlessly generate parsimonious sparse-score risk models (i.e., risk scores), which can be easily implemented and validated in clinical practice. We hope to see its application in various medical case studies.
This package provides a function to calculate multiple performance metrics for actual and predicted values. In total eight metrics will be calculated for particular actual and predicted series. Helps to describe a Statistical model's performance in predicting a data. Also helps to compare various models performance. The metrics are Root Mean Squared Error (RMSE), Relative Root Mean Squared Error (RRMSE), Mean absolute Error (MAE), Mean absolute percentage error (MAPE), Mean Absolute Scaled Error (MASE), Nash-Sutcliffe Efficiency (NSE), Willmottâ s Index (WI), and Legates and McCabe Index (LME). Among them, first five are expected to be lesser whereas, the last three are greater the better. More details can be found from Garai and Paul (2023) <doi:10.1016/j.iswa.2023.200202> and Garai et al. (2024) <doi:10.1007/s11063-024-11552-w>.
Obtain network structures from animal GPS telemetry observations and statistically analyse them to assess their adequacy for social network analysis. Methods include pre-network data permutations, bootstrapping techniques to obtain confidence intervals for global and node-level network metrics, and correlation and regression analysis of the local network metrics.
This package provides a (mildly) opinionated set of functions to help assess medication adherence for researchers working with medication claims data. Medication adherence analyses have several complex steps that are often convoluted and can be time-intensive. The focus is to create a set of functions using "tidy principles" geared towards transparency, speed, and flexibility while working with adherence metrics. All functions perform exactly one task with an intuitive name so that a researcher can handle details (often achieved with vectorized solutions) while we handle non-vectorized tasks common to most adherence calculations such as adjusting fill dates and determining episodes of care. The methodologies in referenced in this package come from Canfield SL, et al (2019) "Navigating the Wild West of Medication Adherence Reporting in Specialty Pharmacy" <doi:10.18553/jmcp.2019.25.10.1073>.
Manage and analyze animal movement data. The functionality of amt includes methods to calculate home ranges, track statistics (e.g. step lengths, speed, or turning angles), prepare data for fitting habitat selection analyses, and simulation of space-use from fitted step-selection functions.
Nonparametric estimation of additive isotonic covariate effects for proportional hazards model.
Wraps the AT Protocol (Authenticated Transfer Protocol) behind Bluesky <https://bsky.social>. Functions can be used for, among others, retrieving posts and followers from the network or posting content.
Imports Azure Application Insights for web pages into Shiny apps via Microsoft's JavaScript snippet. Allows app developers to submit page tracking and submit events.
Build and train a variational autoencoder (VAE) for mixed-type tabular data (continuous, binary, categorical). Models are implemented using TensorFlow and Keras via the reticulate interface, enabling reproducible VAE training for heterogeneous tabular datasets.