Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Integrates game theory and ecological theory to construct social-ecological models that simulate the management of populations and stakeholder actions. These models build off of a previously developed management strategy evaluation (MSE) framework to simulate all aspects of management: population dynamics, manager observation of populations, manager decision making, and stakeholder responses to management decisions. The newly developed generalised management strategy evaluation (GMSE) framework uses genetic algorithms to mimic the decision-making process of managers and stakeholders under conditions of change, uncertainty, and conflict. Simulations can be run using gmse(), gmse_apply(), and gmse_gui() functions.
This package provides functions for performing polygon geometry with grid grobs. This allows complex shapes to be defined by combining simpler shapes.
Robust multiple or multivariate linear regression, nonparametric regression on orthogonal components, classical or robust partial least squares models as described in Bilodeau, Lafaye De Micheaux and Mahdi (2015) <doi:10.18637/jss.v065.i01>.
This package provides a compilation of tools to complete common tasks for studying gerrymandering. This focuses on the geographic tool side of common problems, such as linking different levels of spatial units or estimating how to break up units. Functions exist for creating redistricting-focused data for the US.
Approximate frequentist inference for generalized linear mixed model analysis with expectation propagation used to circumvent the need for multivariate integration. In this version, the random effects can be any reasonable dimension. However, only probit mixed models with one level of nesting are supported. The methodology is described in Hall, Johnstone, Ormerod, Wand and Yu (2018) <arXiv:1805.08423v1>.
Given a landscape resistance surface, creates minimum planar graph (Fall et al. (2007) <doi:10.1007/s10021-007-9038-7>) and grains of connectivity (Galpern et al. (2012) <doi:10.1111/j.1365-294X.2012.05677.x>) models that can be used to calculate effective distances for landscape connectivity at multiple scales. Documentation is provided by several vignettes, and a paper (Chubaty, Galpern & Doctolero (2020) <doi:10.1111/2041-210X.13350>).
This package provides functions to generate and analyze data for psychology experiments based on the General Recognition Theory.
Inference, goodness-of-fit tests, and predictions for continuous and discrete univariate Hidden Markov Models (HMM), including zero-inflated distributions. The goodness-of-fit test is based on a Cramer-von Mises statistic and uses parametric bootstrap to estimate the p-value. The description of the methodology is taken from Nasri et al (2020) <doi:10.1029/2019WR025122>.
This package provides tools for fitting statistical network models to dynamic network data. Can be used for fitting both dynamic network actor models ('DyNAMs') and relational event models ('REMs'). Stadtfeld, Hollway, and Block (2017a) <doi:10.1177/0081175017709295>, Stadtfeld, Hollway, and Block (2017b) <doi:10.1177/0081175017733457>, Stadtfeld and Block (2017) <doi:10.15195/v4.a14>, Hoffman et al. (2020) <doi:10.1017/nws.2020.3>.
This package contains methods for fitting Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs). Generalized regression models are common methods for handling data for which assuming Gaussian-distributed errors is not appropriate. For instance, if the response of interest is binary, count, or proportion data, one can instead model the expectation of the response based on an appropriate data-generating distribution. This package provides methods for fitting GLMs and GAMs under Beta regression, Poisson regression, Gamma regression, and Binomial regression (currently GLM only) settings. Models are fit using local scoring algorithms described in Hastie and Tibshirani (1990) <doi:10.1214/ss/1177013604>.
The function gggap() streamlines the creation of segments on the y-axis of ggplot2 plots which is otherwise not a trivial task to accomplish.
The goal of gsDesign2 is to enable fixed or group sequential design under non-proportional hazards. To enable highly flexible enrollment, time-to-event and time-to-dropout assumptions, gsDesign2 offers piecewise constant enrollment, failure rates, and dropout rates for a stratified population. This package includes three methods for designs: average hazard ratio, weighted logrank tests in Yung and Liu (2019) <doi:10.1111/biom.13196>, and MaxCombo tests. Substantial flexibility on top of what is in the gsDesign package is intended for selecting boundaries.
Allows users to fit a cosinor model using the glmmTMB framework. This extends on existing cosinor modeling packages, including cosinor and circacompare', by including a wide range of available link functions and the capability to fit mixed models. The cosinor model is described by Cornelissen (2014) <doi:10.1186/1742-4682-11-16>.
Reads corporate data such as board composition and compensation for companies traded at B3, the Brazilian exchange <https://www.b3.com.br/>. All data is downloaded and imported from the ftp site <http://dados.cvm.gov.br/dados/CIA_ABERTA/DOC/FRE/>.
This package provides tools to assist planning and monitoring of time-to-event trials under complicated censoring assumptions and/or non-proportional hazards. There are three main components: The first is analytic calculation of predicted time-to-event trial properties, providing estimates of expected hazard ratio, event numbers and power under different analysis methods. The second is simulation, allowing stochastic estimation of these same properties. Thirdly, it provides parametric event prediction using blinded trial data, including creation of prediction intervals. Methods are based upon numerical integration and a flexible object-orientated structure for defining event, censoring and recruitment distributions (Curves).
Implement group response-adaptive randomization procedures, which also integrates standard non-group response-adaptive randomization methods as specialized instances. It is also uniquely capable of managing complex scenarios, including those with delayed and missing responses, thereby expanding its utility in real-world applications. This package offers 16 functions for simulating a variety of response adaptive randomization procedures. These functions are essential for guiding the selection of statistical methods in clinical trials, providing a flexible and effective approach to trial design. Some of the detailed methodologies and algorithms used in this package, please refer to the following references: LJ Wei (1979) <doi:10.1214/aos/1176344614> L. J. WEI and S. DURHAM (1978) <doi:10.1080/01621459.1978.10480109> Durham, S. D., FlournoY, N. AND LI, W. (1998) <doi:10.2307/3315771> Ivanova, A., Rosenberger, W. F., Durham, S. D. and Flournoy, N. (2000) <https://www.jstor.org/stable/25053121> Bai Z D, Hu F, Shen L. (2002) <doi:10.1006/jmva.2001.1987> Ivanova, A. (2003) <doi:10.1007/s001840200220> Hu, F., & Zhang, L. X. (2004) <doi:10.1214/aos/1079120137> Hu, F., & Rosenberger, W. F. (2006, ISBN:978-0-471-65396-7). Zhang, L. X., Chan, W. S., Cheung, S. H., & Hu, F. (2007) <https://www.jstor.org/stable/26432528> Zhang, L., & Rosenberger, W. F. (2006) <doi:10.1111/j.1541-0420.2005.00496.x> Hu, F., Zhang, L. X., Cheung, S. H., & Chan, W. S. (2008) <doi:10.1002/cjs.5550360404>.
Encodes simple feature ('sf') objects and coordinates, and decodes polylines using the Google polyline encoding algorithm (<https://developers.google.com/maps/documentation/utilities/polylinealgorithm>).
An implementation of ggplot2'-methods to present the composition of Solvency II Solvency Capital Requirement (SCR) as a series of concentric circle-parts. Solvency II (Solvency 2) is European insurance legislation, coming in force by the delegated acts of October 10, 2014. <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AL%3A2015%3A012%3ATOC>. Additional files, defining the structure of the Standard Formula (SF) method of the SCR-calculation are provided. The structure files can be adopted for localization or for insurance companies who use Internal Models (IM). Options are available for combining smaller components, horizontal and vertical scaling, rotation, and plotting only some circle-parts. With outlines and connectors several SCR-compositions can be compared, for example in ORSA-scenarios (Own Risk and Solvency Assessment).
Reads annual financial reports including assets, liabilities, dividends history, stockholder composition and much more from Bovespa's DFP, FRE and FCA systems <http://www.b3.com.br/pt_br/produtos-e-servicos/negociacao/renda-variavel/empresas-listadas.htm>. These are web based interfaces for all financial reports of companies traded at Bovespa. The package is specially designed for large scale data importation, keeping a tabular (long) structure for easier processing.
Efficient algorithms for fitting generalized linear and additive models with group elastic net penalties as described in Helwig (2025) <doi:10.1080/10618600.2024.2362232>. Implements group LASSO, group MCP, and group SCAD with an optional group ridge penalty. Computes the regularization path for linear regression (gaussian), multivariate regression (multigaussian), smoothed support vector machines (svm1), squared support vector machines (svm2), logistic regression (binomial), proportional odds logistic regression (ordinal), multinomial logistic regression (multinomial), log-linear count regression (poisson and negative.binomial), and log-linear continuous regression (gamma and inverse gaussian). Supports default and formula methods for model specification, k-fold cross-validation for tuning the regularization parameters, and nonparametric regression via tensor product reproducing kernel (smoothing spline) basis function expansion.
This package provides a range of filters that can be applied to layers from the ggplot2 package and its extensions, along with other graphic elements such as guides and theme elements. The filters are applied at render time and thus uses the exact pixel dimensions needed.
Perform gene set enrichment analyses using the Gene set Ordinal Association Test (GOAT) algorithm and visualize your results. Koopmans, F. (2024) <doi:10.1038/s42003-024-06454-5>.
Generalized competing event model based on Cox PH model and Fine-Gray model. This function is designed to develop optimized risk-stratification methods for competing risks data, such as described in: 1. Carmona R, Gulaya S, Murphy JD, Rose BS, Wu J, Noticewala S,McHale MT, Yashar CM, Vaida F, and Mell LK (2014) <DOI:10.1016/j.ijrobp.2014.03.047>. 2. Carmona R, Zakeri K, Green G, Hwang L, Gulaya S, Xu B, Verma R, Williamson CW, Triplett DP, Rose BS, Shen H, Vaida F, Murphy JD, and Mell LK (2016) <DOI:10.1200/JCO.2015.65.0739>. 3. Lunn, Mary, and Don McNeil (1995) <DOI:10.2307/2532940>.
This package implements maximum likelihood estimation for Gaussian processes, supporting both isotropic and separable models with predictive capabilities. Includes penalized likelihood estimation following Li and Sudjianto (2005, <doi:10.1198/004017004000000671>), with cross-validation guided by decorrelated prediction error (DPE) metric. DPE metric, motivated by Mahalanobis distance, serves as evaluation criteria that accounts for predictive uncertainty in tuning parameter selection (Mutoh, Booth, and Stallrich, 2025, <doi:10.48550/arXiv.2511.18111>). Designed specifically for small datasets.