Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a range of filters that can be applied to layers from the ggplot2 package and its extensions, along with other graphic elements such as guides and theme elements. The filters are applied at render time and thus uses the exact pixel dimensions needed.
Offers various swiss maps as data frames and ggplot2 objects and gives the possibility to add layers of data on the maps. Data are publicly available from the swiss federal statistical office. In addition to the \codemaps2 object (a list of 8 swiss maps, at various levels), there are the data frames with the boundaries used to produce these maps (\codeshp_df, a list with 8 data frames).
Interface between the GMT map-making software and R, enabling the user to manipulate geographic data within R and call GMT commands to draw and annotate maps in postscript format. The gmt package is about interactive data analysis, rapidly visualizing subsets and summaries of geographic data, while performing statistical analysis in the R console.
Solves a least squares system Ax~=b (dim(A)=(m,n) with m >= n) with a precondition matrix B: BAx=Bb (dim(B)=(n,m)). Implemented method is based on GMRES (Saad, Youcef; Schultz, Martin H. (1986). "GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems" <doi:10.1137/0907058>) with callback functions, i.e. no explicit A, B or b are required.
Local structure in genomic data often induces dependence between observations taken at different genomic locations. Ignoring this dependence leads to underestimation of the standard error of parameter estimates. This package uses block bootstrapping to estimate asymptotically correct standard errors of parameters from any standard generalised linear model that may be fit by the glm() function.
Convert Ensembl gene identifiers from Genotype-Tissue Expression (GTEx) data to identifiers in other annotation systems, including Entrez', HGNC', and UniProt'.
An implementation of the generalized graded unfolding model (GGUM) in R, see Roberts, Donoghue, and Laughlin (2000) <doi:10.1177/01466216000241001>). It allows to simulate data sets based on the GGUM. It fits the GGUM and the GUM, and it retrieves item and person parameter estimates. Several plotting functions are available (item and test information functions; item and test characteristic curves; item category response curves). Additionally, there are some functions that facilitate the communication between R and GGUM2004'. Finally, a model-fit checking utility, MODFIT(), is also available.
Group Sequential Operating Characteristics for Clinical, Bayesian two-arm Trials with known Sigma and Normal Endpoints, as described in Gerber and Gsponer (2016) <doi: 10.18637/jss.v069.i11>.
This package provides a user-friendly shiny application for Bayesian machine learning analysis of marine species distributions. GLOSSA (Global Ocean Species Spatio-temporal Analysis) uses Bayesian Additive Regression Trees (BART; Chipman, George, and McCulloch (2010) <doi:10.1214/09-AOAS285>) to model species distributions with intuitive workflows for data upload, processing, model fitting, and result visualization. It supports presence-absence and presence-only data (with pseudo-absence generation), spatial thinning, cross-validation, and scenario-based projections. GLOSSA is designed to facilitate ecological research by providing easy-to-use tools for analyzing and visualizing marine species distributions across different spatial and temporal scales. Optionally, pseudo-absences can be generated within the environmental space using the external package flexsdm (not on CRAN), which can be downloaded from <https://github.com/sjevelazco/flexsdm>; this functionality is used conditionally when available and all core features work without it.
This package provides a simple and intuitive high-level language for music representation. Generates and embeds music scores and audio files in RStudio', R Markdown documents, and R Jupyter Notebooks'. Internally, uses MusicXML <https://github.com/w3c/musicxml> to represent music, and MuseScore <https://musescore.org/> to convert MusicXML'.
This package performs Granger causality tests on pairs of time series to determine causal relationships. Uses Vector Autoregressive (VAR) models to test whether one time series helps predict another beyond what the series own past values provide. Returns structured results including p-values, test statistics, and causality conclusions for both directions.
Add a scroll back to top Font Awesome icon <https://fontawesome.com/> in rmarkdown documents and shiny apps thanks to jQuery GoTop <https://scottdorman.blog/jquery-gotop/>.
This package provides functions for performing graphical difference testing. Differences are generated between raster images. Comparisons can be performed between different package versions and between different R versions.
Efficient computation of likelihoods in design-based choice response time models, including the Decision Diffusion Model, is supported. The package enables rapid evaluation of likelihood functions for both single- and multi-subject models across trial-level data. It also offers fast initialisation of starting parameters for genetic sampling with many Markov chains, facilitating estimation in complex models typically found in experimental psychology and behavioural science. These optimisations help reduce computational overhead in large-scale model fitting tasks.
The multiple contrast tests for univariate were proposed by Munko, Ditzhaus, Pauly, Smaga, and Zhang (2023) <doi:10.48550/arXiv.2306.15259>. Recently, they were extended to the multivariate functional data in Munko, Ditzhaus, Pauly, and Smaga (2024) <doi:10.48550/arXiv.2406.01242>. These procedures enable us to evaluate the overall hypothesis regarding equality, as well as specific hypotheses defined by contrasts. In particular, we can perform post hoc tests to examine particular comparisons of interest. Different experimental designs are supported, e.g., one-way and multi-way analysis of variance for functional data.
This package implements methods to plot periodic data in any arbitrary range on the fly.
This package creates presentation-ready tables summarizing data sets, regression models, and more. The code to create the tables is concise and highly customizable. Data frames can be summarized with any function, e.g. mean(), median(), even user-written functions. Regression models are summarized and include the reference rows for categorical variables. Common regression models, such as logistic regression and Cox proportional hazards regression, are automatically identified and the tables are pre-filled with appropriate column headers.
Saves a ggplot object into multiple files, each with a layer added incrementally. Generally to be used in presentation slides. Flexible enough to allow different file types for the final complete plot, and intermediate builds.
Estimation of the effect of each income source on income inequalities based on the decomposition of Lerman and Yitzhaki (1985) <doi:10.2307/1928447>.
Simple package to download Google Sheets using just the sharing link. Spreadsheets can be downloaded as a data frame, or as plain text to parse manually. Google Sheets is the new name for Google Docs Spreadsheets <https://www.google.com/sheets/about>.
Obtain standardized data from multiple Git services, including GitHub and GitLab'. Designed to be Git service-agnostic, this package assists teams with activities spread across various Git platforms by providing a unified way to access repository data.
This package provides a statistical disclosure control tool to protect tables by suppression using the Gaussian elimination secondary suppression algorithm (Langsrud, 2024) <doi:10.1007/978-3-031-69651-0_6>. A suggestion is to start by working with functions SuppressSmallCounts() and SuppressDominantCells(). These functions use primary suppression functions for the minimum frequency rule and the dominance rule, respectively. Novel functionality for suppression of disclosive cells is also included. General primary suppression functions can be supplied as input to the general working horse function, GaussSuppressionFromData(). Suppressed frequencies can be replaced by synthetic decimal numbers as described in Langsrud (2019) <doi:10.1007/s11222-018-9848-9>.
This package provides classes and methods for handling networks or graphs whose nodes are geographical (i.e. locations in the globe). The functionality includes the creation of objects of class geonetwork as a graph with node coordinates, the computation of network measures, the support of spatial operations (projection to different Coordinate Reference Systems, handling of bounding boxes, etc.) and the plotting of the geonetwork object combined with supplementary cartography for spatial representation.
An implementation of hyperparameter optimization for Gradient Boosted Trees on binary classification and regression problems. The current version provides two optimization methods: Bayesian optimization and random search. Instead of giving the single best model, the final output is an ensemble of Gradient Boosted Trees constructed via the method of ensemble selection.