Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Statistical methodology for sparse multivariate extreme value models. Methods are provided for exact simulation and statistical inference for multivariate Pareto distributions on graphical structures as described in the paper Graphical Models for Extremes by Engelke and Hitz (2020) <doi:10.1111/rssb.12355>.
Analyze the default risk of credit portfolios. Commonly known models, like CreditRisk+ or the CreditMetrics model are implemented in their very basic settings. The portfolio loss distribution can be achieved either by simulation or analytically in case of the classic CreditRisk+ model. Models are only implemented to respect losses caused by defaults, i.e. migration risk is not included. The package structure is kept flexible especially with respect to distributional assumptions in order to quantify the sensitivity of risk figures with respect to several assumptions. Therefore the package can be used to determine the credit risk of a given portfolio as well as to quantify model sensitivities.
This package provides a compilation of nonlinear growth models.
In statistical modeling, there is a wide variety of regression models for categorical dependent variables (nominal or ordinal data); yet, there is no software embracing all these models together in a uniform and generalized format. Following the methodology proposed by Peyhardi, Trottier, and Guédon (2015) <doi:10.1093/biomet/asv042>, we introduce GLMcat', an R package to estimate generalized linear models implemented under the unified specification (r, F, Z). Where r represents the ratio of probabilities (reference, cumulative, adjacent, or sequential), F the cumulative cdf function for the linkage, and Z, the design matrix. The package accompanies the paper "GLMcat: An R Package for Generalized Linear Models for Categorical Responses" in the Journal of Statistical Software, Volume 114, Issue 9 (see <doi:10.18637/jss.v114.i09>).
This package provides functions for inference of ploidy from (Genotyping-by-sequencing) GBS data, including a function to infer allelic ratios and allelic proportions in a Bayesian framework.
Interface for extra smooth functions including tensor products, neural networks and decision trees.
Create biplots for GGE (genotype plus genotype-by-environment) and GGB (genotype plus genotype-by-block-of-environments) models. See Laffont et al. (2013) <doi:10.2135/cropsci2013.03.0178>.
Collection of tools that facilitates data access and workflow for spatial analysis of Argentina. Includes historical information from censuses, administrative limits at different levels of aggregation, location of human settlements, among others. Since it is expected that the majority of users will be Spanish-speaking, the documentation of the package prioritizes this language, although an effort is made to also offer annotations in English.
R function gawdis() produces multi-trait dissimilarity with more uniform contributions of different traits. de Bello et al. (2021) <doi:10.1111/2041-210X.13537> presented the approach based on minimizing the differences in the correlation between the dissimilarity of each trait, or groups of traits, and the multi-trait dissimilarity. This is done using either an analytic or a numerical solution, both available in the function.
The Grouphmap was implemented in R, an open-source programming environment, and was released under the provided website. The difference analysis is based on the limma package, which can cover gene and protein expression profiles (Reference: Matthew E Ritchie , Belinda Phipson , Di Wu , Yifang Hu , Charity W Law , Wei Shi , Gordon K Smyth (2015) <doi:10.1093/nar/gkv007>). The GO enrichment analysis is based on the clusterProfiler package and supports three common species: human, mouse, and yeast (Reference: Guangchuang Yu, Li-Gen Wang, Yanyan Han, Qing-Yu He (2012) <doi:10.1089/omi.2011.0118>). The results of batch difference analysis and enrichment analysis are output in separate folders for easy viewing and further visualization of the results during the process. The results returned a heatmap in R and exported to 3 folders named DEG, go, and merge.
Computes the gravitational and magnetic anomalies generated by 3-D vertical rectangular prisms at specific observation points using the method of Plouff (1976) <doi:10.1190/1.1440645>.
Detecting spatial associations via spatial stratified heterogeneity, accounting for spatial dependencies, interpretability, complex interactions, and robust stratification. In addition, it supports the spatial stratified heterogeneity family described in Lv et al. (2025)<doi:10.1111/tgis.70032>.
Function gmcmtx0() computes a more reliable (general) correlation matrix. Since causal paths from data are important for all sciences, the package provides many sophisticated functions. causeSummBlk() and causeSum2Blk() give easy-to-interpret causal paths. Let Z denote control variables and compare two flipped kernel regressions: X=f(Y, Z)+e1 and Y=g(X, Z)+e2. Our criterion Cr1 says that if |e1*Y|>|e2*X| then variation in X is more "exogenous or independent" than in Y, and the causal path is X to Y. Criterion Cr2 requires |e2|<|e1|. These inequalities between many absolute values are quantified by four orders of stochastic dominance. Our third criterion Cr3, for the causal path X to Y, requires new generalized partial correlations to satisfy |r*(x|y,z)|< |r*(y|x,z)|. The function parcorVec() reports generalized partials between the first variable and all others. The package provides several R functions including get0outliers() for outlier detection, bigfp() for numerical integration by the trapezoidal rule, stochdom2() for stochastic dominance, pillar3D() for 3D charts, canonRho() for generalized canonical correlations, depMeas() measures nonlinear dependence, and causeSummary(mtx) reports summary of causal paths among matrix columns. Portfolio selection: decileVote(), momentVote(), dif4mtx(), exactSdMtx() can rank several stocks. Functions whose names begin with boot provide bootstrap statistical inference, including a new bootGcRsq() test for "Granger-causality" allowing nonlinear relations. A new tool for evaluation of out-of-sample portfolio performance is outOFsamp(). Panel data implementation is now included. See eight vignettes of the package for theory, examples, and usage tips. See Vinod (2019) \doi10.1080/03610918.2015.1122048.
Routines for log-linear models of incomplete contingency tables, including some latent class models, via EM and Fisher scoring approaches. Allows bootstrapping. See Espeland and Hui (1987) <doi:10.2307/2531553> for general approach.
This package provides tools to set up, train, store, load, investigate and analyze generative neural networks. In particular, functionality for generative moment matching networks is provided.
This package provides a Humanitarian Data Exchange (HDX) theme, color palettes, and scales for ggplot2 to allow users to easily follow the HDX visual design guide, including convenience functions for for loading and using the Source Sans 3 font.
Full descriptive statistics, physical description of sediment, metric or phi sieves. Includes a Shiny web application for interactive grain size analysis and visualization.
Facilitate reporting for regression and correlation modeling, hypothesis testing, variance analysis, outlier detection, and detailed descriptive statistics.
Facilitates efficient visualization of Relative Synonymous Codon Usage patterns across species. Based on analytical outputs from codonW', MEGA', and Phylosuite', it supports multi-species RSCU comparisons and allows users to explore visual analysis of structurally similar datasets.
Using the DNA sequence and gene annotation files provided in ENSEMBL <https://www.ensembl.org/index.html>, the functions implemented in the package try to find the DNA sequences and protein sequences of any given genomic loci, and to find the genomic coordinates and protein sequences of any given protein locations, which are the frequent tasks in the analysis of genomic and proteomic data.
This package provides functions which make using the Generalized Regression Estimator(GREG) J.N.K. Rao, Isabel Molina, (2015) <doi:10.3390/f11020244> and the Generalized Regression Estimator Operating on Resolutions of Y (GREGORY) easier. The functions are designed to work well within a forestry context, and estimate multiple estimation units at once. Compared to other survey estimation packages, this function has greater flexibility when describing the linear model.
This package implements the generalized integration model, which integrates individual-level data and summary statistics under a generalized linear model framework. It supports continuous and binary outcomes to be modeled by the linear and logistic regression models. For binary outcome, data can be sampled in prospective cohort studies or case-control studies. Described in Zhang et al. (2020)<doi:10.1093/biomet/asaa014>.
Add trendline and confidence interval of linear or nonlinear regression model and show equation to ggplot as simple as possible. For a general overview of the methods used in this package, see Ritz and Streibig (2008) <doi:10.1007/978-0-387-09616-2> and Greenwell and Schubert Kabban (2014) <doi:10.32614/RJ-2014-009>.
Designed to customize ggplot graphics according to the institutional identity of the University of Ljubljana.