Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of tools and data for analyzing the Gause microcosm experiments, and for fitting Lotka-Volterra models to time series data. Includes methods for fitting single-species logistic growth, and multi-species interaction models, e.g. of competition, predator/prey relationships, or mutualism. See documentation for individual functions for examples. In general, see the lv_optim() function for examples of how to fit parameter values in multi-species systems. Note that the general methods applied here, as well as the form of the differential equations that we use, are described in detail in the Quantitative Ecology textbook by Lehman et al., available at <http://hdl.handle.net/11299/204551>, and in Lina K. Mühlbauer, Maximilienne Schulze, W. Stanley Harpole, and Adam T. Clark. gauseR': Simple methods for fitting Lotka-Volterra models describing Gause's Struggle for Existence in the journal Ecology and Evolution.
This package provides functions to fit two-dimensional Gaussian functions, predict values from fits, and produce plots of predicted data via either ggplot2 or base R plotting.
This package provides a collection of functions useful in (vegetation) community analyses and ordinations. Includes automatic species selection for ordination diagrams, NMDS stress/scree plots, species response curves, merging of taxa as well as calculation and sorting of synoptic tables.
This package provides functions for whole-genome sequencing studies, including genome-wide scan, candidate region scan and single window test.
This package provides a wrapper of different standard estimation methods for gravity models. This package provides estimation methods for log-log models and multiplicative models.
Genomic signatures represent unique features within a species DNA, enabling the differentiation of species and offering broad applications across various fields. This package provides essential tools for calculating these specific signatures, streamlining the process for researchers and offering a comprehensive and time-saving solution for genomic analysis.The amino acid contents are identified based on the work published by Sandberg et al. (2003) <doi:10.1016/s0378-1119(03)00581-x> and Xiao et al. (2015) <doi:10.1093/bioinformatics/btv042>. The Average Mutual Information Profiles (AMIP) values are calculated based on the work of Bauer et al. (2008) <doi:10.1186/1471-2105-9-48>. The Chaos Game Representation (CGR) plot visualization was done based on the work of Deschavanne et al. (1999) <doi:10.1093/oxfordjournals.molbev.a026048> and Jeffrey et al. (1990) <doi:10.1093/nar/18.8.2163>. The GC content is calculated based on the work published by Nakabachi et al. (2006) <doi:10.1126/science.1134196> and Barbu et al. (1956) <https://pubmed.ncbi.nlm.nih.gov/13363015>. The Oligonucleotide Frequency Derived Error Gradient (OFDEG) values are computed based on the work published by Saeed et al. (2009) <doi:10.1186/1471-2164-10-S3-S10>. The Relative Synonymous Codon Usage (RSCU) values are calculated based on the work published by Elek (2018) <https://urn.nsk.hr/urn:nbn:hr:217:686131>.
This package provides tools for simulating from spatial modeling of individual level of infectious disease transmission when co-variates measured with error, and carrying out infectious disease data analyses with the same models. The epidemic models considered are distance-based model within Susceptible-Infectious-Removed (SIR) compartmental frameworks.
Allows you to retrieve information from the Google Knowledge Graph API <https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html> and process it in R in various forms. The Knowledge Graph Search API lets you find entities in the Google Knowledge Graph'. The API uses standard schema.org types and is compliant with the JSON-LD specification.
Plot density and distribution functions with automatic selection of suitable regions. Numerically invert (compute quantiles) distribution functions. Simulate real and complex numbers from distributions of their magnitude and arguments. Optionally, the magnitudes and/or arguments may be fixed in almost arbitrary ways. Create polynomials from roots given in Cartesian or polar form. Small programming utilities: check if an object is identical to NA, count positional arguments in a call, set intersection of more than two sets, check if an argument is unnamed, compute the graph of S4 classes in packages.
Interact with Google's Cloud Natural Language API <https://cloud.google.com/natural-language/> (v1) via R. The API has four main features, all of which are available through this R package: syntax analysis and part-of-speech tagging, entity analysis, sentiment analysis, and language identification.
Scrapes Google Citation pages and creates data frames of citations over time.
This package performs genetic algorithm (Scrucca, L (2013) <doi:10.18637/jss.v053.i04>) assisted genomic best liner unbiased prediction for genomic selection. It also provides a binning method in natural population for genomic selection under the principle of linkage disequilibrium for dimensional reduction.
Extensions to ggplot2 providing low-level debug tools: statistics and geometries echoing their data argument. Layer manipulation: deletion, insertion, extraction and reordering of layers. Deletion of unused variables from the data object embedded in "ggplot" objects.
Uses several types of indicator saturation and automated General-to-Specific (GETS) modelling from the gets package and applies it to panel data. This allows the detection of structural breaks in panel data, operationalising a reverse causal approach of causal inference, see Pretis and Schwarz (2022) <doi:10.2139/ssrn.4022745>.
This package provides an R interface to the GeoServer REST API, allowing to upload and publish data in a GeoServer web-application and expose data to OGC Web-Services. The package currently supports all CRUD (Create,Read,Update,Delete) operations on GeoServer workspaces, namespaces, datastores (stores of vector data), featuretypes, layers, styles, as well as vector data upload operations. For more information about the GeoServer REST API, see <https://docs.geoserver.org/stable/en/user/rest/>.
This package implements general unilateral loading estimator for two-layer latent factor models with smooth, element-wise factor transformations. We provide data simulation, loading estimation,finite-sample error bounds, and diagnostic tools for zero-mean and sub-Gaussian assumptions. A unified interface is given for evaluating estimation accuracy and cosine similarity. The philosophy of the package is described in Guo G. (2026) <doi:10.1016/j.apm.2025.116280>.
Draw posterior samples to estimate the precision matrix for multivariate Gaussian data. Posterior means of the samples is the graphical horseshoe estimate by Li, Bhadra and Craig(2017) <arXiv:1707.06661>. The function uses matrix decomposition and variable change from the Bayesian graphical lasso by Wang(2012) <doi:10.1214/12-BA729>, and the variable augmentation for sampling under the horseshoe prior by Makalic and Schmidt(2016) <arXiv:1508.03884>. Structure of the graphical horseshoe function was inspired by the Bayesian graphical lasso function using blocked sampling, authored by Wang(2012) <doi:10.1214/12-BA729>.
This package provides functions for graph matching via nodes degree profiles are provided in this package. The models we can handle include Erdos-Renyi random graphs and stochastic block models(SBM). More details are in the reference paper: Yaofang Hu, Wanjie Wang and Yi Yu (2020) <arXiv:2006.03284>.
Spatial stratified heterogeneity (SSH), referring to the within strata are more similar than the between strata, a model with global parameters would be confounded if input data is SSH. Note that the "spatial" here can be either geospatial or the space in mathematical meaning. Geographical detector is a novel tool to investigate SSH: (1) measure and find SSH of a variable Y; (2) test the power of determinant X of a dependent variable Y according to the consistency between their spatial distributions; and (3) investigate the interaction between two explanatory variables X1 and X2 to a dependent variable Y (Wang et al 2014 <doi:10.1080/13658810802443457>, Wang, Zhang, and Fu 2016 <doi:10.1016/j.ecolind.2016.02.052>).
R-interface to C++ implementation of the rank/score permutation based GSEA test (Subramanian et al 2005 <doi: 10.1073/pnas.0506580102>).
This package implements three nonparametric two-sample tests for multivariate paired data and pair matching. Methods are described in the associated preprint: <doi:10.48550/arXiv.2007.01497>.
Finds adaptive strategies for sequential symmetric games using a genetic algorithm. Currently, any symmetric two by two matrix is allowed, and strategies can remember the history of an opponent's play from the previous three rounds of moves in iterated interactions between players. The genetic algorithm returns a list of adaptive strategies given payoffs, and the mean fitness of strategies in each generation.
Fits generalized linear models using the same model specification as glm in the stats package, but with a modified default fitting method that provides greater stability for models that may fail to converge using glm.
Computes the probability density function (pdf), cumulative distribution function (cdf), quantile function (qf) and generates random values (rg) for the following general models : mixture models, composite models, folded models, skewed symmetric models and arc tan models.