Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implement maximum likelihood estimation for Poisson generalized linear models with grouped and right-censored count data. Intended to be used for analyzing grouped and right-censored data, which is widely applied in many branches of social sciences. The algorithm implemented is described in Fu et al., (2021) <doi:10.1111/rssa.12678>.
Allows user to have graphical user interface to perform analysis of Agricultural experimental data. On using the functions in this package a Interactive User Interface will pop up. Apps Works by simple upload of files in CSV format.
This package provides a zero-inflated quasi-Poisson factor model to display similarity between samples visually in a low (2 or 3) dimensional space.
This package performs variable selection with data from Genome-wide association studies (GWAS), or other high-dimensional data with continuous, binary or survival outcomes, combining in an iterative framework the computational efficiency of the structured screen-and-select variable selection strategy based on some association learning and the parsimonious uncertainty quantification provided by the use of non-local priors (see Sanyal et al., 2019 <DOI:10.1093/bioinformatics/bty472>).
This package provides methods for processing spatial data for decision-making. This package is an R implementation of methods provided by the open source software GeoFIS <https://www.geofis.org> (Leroux et al. 2018) <doi:10.3390/agriculture8060073>. The main functionalities are the management zone delineation (Pedroso et al. 2010) <doi:10.1016/j.compag.2009.10.007> and data aggregation (Mora-Herrera et al. 2020) <doi:10.1016/j.compag.2020.105624>.
Fit a geographically weighted logistic elastic net regression. Detailed explanations can be found in Yoneoka et al. (2016): New algorithm for constructing area-based index with geographical heterogeneities and variable selection: An application to gastric cancer screening <doi:10.1038/srep26582>.
Large language models are readily accessible via API. This package lowers the barrier to use the API inside of your development environment. For more on the API, see <https://platform.openai.com/docs/introduction>.
Ease the transition between R vectors and markdown text. With gluedown and rmarkdown', users can create traditional vectors in R, glue those strings together with the markdown syntax, and print those formatted vectors directly to the document. This package primarily uses GitHub Flavored Markdown (GFM), an offshoot of the unambiguous CommonMark specification by John MacFarlane (2019) <https://spec.commonmark.org/>.
Improved version of GRIN software that streamlines its use in practice to analyze genomic lesion data, accelerate its computing, and expand its analysis capabilities to answer additional scientific questions including a rigorous evaluation of the association of genomic lesions with RNA expression. Pounds, Stan, et al. (2013) <DOI:10.1093/bioinformatics/btt372>.
Gradient-Enhanced Kriging as an emulator for computer experiments based on Maximum-Likelihood estimation.
Sankey and alluvial diagrams visualise flows of quantities across stages in stacked bars. This package makes it easy to create such diagrams using ggplot2'.
Extract and reform data from GWAS (genome-wide association study) results, and then make a single integrated forest plot containing multiple windows of which each shows the result of individual SNPs (or other items of interest).
Owing to the rich shapes of Generalised Lambda Distributions (GLDs), GLD standard/quantile/Accelerated Failure Time (AFT) regression is a competitive flexible model compared to standard/quantile/AFT regression. The proposed method has some major advantages: 1) it provides a reference line which is very robust to outliers with the attractive property of zero mean residuals and 2) it gives a unified, elegant quantile regression model from the reference line with smooth regression coefficients across different quantiles. For AFT model, it also eliminates the needs to try several different AFT models, owing to the flexible shapes of GLD. The goodness of fit of the proposed model can be assessed via QQ plots and Kolmogorov-Smirnov tests and data driven smooth test, to ensure the appropriateness of the statistical inference under consideration. Statistical distributions of coefficients of the GLD regression line are obtained using simulation, and interval estimates are obtained directly from simulated data. References include the following: Su (2015) "Flexible Parametric Quantile Regression Model" <doi:10.1007/s11222-014-9457-1>, Su (2021) "Flexible parametric accelerated failure time model"<doi:10.1080/10543406.2021.1934854>.
This package implements a variant of the Self-Organizing Map (SOM) algorithm designed for mixed-attribute datasets. Similarity between observations is computed using the Gower distance, and categorical prototypes are updated via heuristic strategies (weighted mode and multinomial sampling). Provides functions for model fitting, mapping, visualization (U-Matrix and component planes), and evaluation, making SOM applicable to heterogeneous real-world data. For methodological details see Sáez and Salas (2026) <doi:10.1007/s41060-025-00941-6>.
This package implements LASSO regression using gradient descent with support for Gaussian, Binomial, Negative Binomial, and Zero-Inflated Negative Binomial (ZINB) families. Features cross-validation for determining lambda, stability selection, and bootstrapping for confidence intervals. Methods described in Tibshirani (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x> and Meinshausen and Buhlmann (2010) <doi:10.1111/j.1467-9868.2010.00740.x>.
This package provides methods for searching through genealogical data and displaying the results. Plotting algorithms assist with data exploration and publication-quality image generation. Includes interactive genealogy visualization tools. Provides parsing and calculation methods for variables in descendant branches of interest. Uses the Grammar of Graphics.
Set of functions for step-wise generation of (weighted) graphs. Aimed for research in the field of single- and multi-objective combinatorial optimization. Graphs are generated adding nodes, edges and weights. Each step may be repeated multiple times with different predefined and custom generators resulting in high flexibility regarding the graph topology and structure of edge weights.
Supports image files and graphic objects to be visualized in ggplot2 graphic system.
This package provides function to apply "Group sequential enrichment design incorporating subgroup selection" (GSED) method proposed by Magnusson and Turnbull (2013) <doi:10.1002/sim.5738>.
Graceful ggplot'-based graphics and utility functions for working with generalized additive models (GAMs) fitted using the mgcv package. Provides a reimplementation of the plot() method for GAMs that mgcv provides, as well as tidyverse compatible representations of estimated smooths.
To calculate the relative risk (RR) for the generalized additive model.
This package provides a collection of datasets for the upcoming book "Graficas versatiles con ggplot: Analisis visuales de datos", by Raymond L. Tremblay and Julian Hernandez-Serano.
This package provides functions to analyze data exported from Google Takeout'. The package supports unzipping archives and extracting user review data from Google Business Profile exports into tidy data frames for further analysis.
This package provides tools for downloading, processing, and reporting daily and finalized GreenFeed data.