Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementation of global envelopes for a set of general d-dimensional vectors T in various applications. A 100(1-alpha)% global envelope is a band bounded by two vectors such that the probability that T falls outside this envelope in any of the d points is equal to alpha. Global means that the probability is controlled simultaneously for all the d elements of the vectors. The global envelopes can be used for graphical Monte Carlo and permutation tests where the test statistic is a multivariate vector or function (e.g. goodness-of-fit testing for point patterns and random sets, functional analysis of variance, functional general linear model, n-sample test of correspondence of distribution functions), for central regions of functional or multivariate data (e.g. outlier detection, functional boxplot) and for global confidence and prediction bands (e.g. confidence band in polynomial regression, Bayesian posterior prediction). See Myllymäki and MrkviÄ ka (2024) <doi:10.18637/jss.v111.i03>, Myllymäki et al. (2017) <doi:10.1111/rssb.12172>, MrkviÄ ka and Myllymäki (2023) <doi:10.1007/s11222-023-10275-7>, MrkviÄ ka et al. (2016) <doi:10.1016/j.spasta.2016.04.005>, MrkviÄ ka et al. (2017) <doi:10.1007/s11222-016-9683-9>, MrkviÄ ka et al. (2020) <doi:10.14736/kyb-2020-3-0432>, MrkviÄ ka et al. (2021) <doi:10.1007/s11009-019-09756-y>, Myllymäki et al. (2021) <doi:10.1016/j.spasta.2020.100436>, MrkviÄ ka et al. (2022) <doi:10.1002/sim.9236>, Dai et al. (2022) <doi:10.5772/intechopen.100124>, DvoŠák and MrkviÄ ka (2022) <doi:10.1007/s00180-021-01134-y>, MrkviÄ ka et al. (2023) <doi:10.48550/arXiv.2309.04746>, and Konstantinou et al. (2024) <doi: 10.1007/s00180-024-01569-z>.
This package provides functions for obtaining the probability of detection, for grab samples selection by using two different methods such as systematic or random based on two-state Markov chain model. For detection probability calculation, we used results from Bhat, U. and Lal, R. (1988) <doi:10.2307/1427041>.
Mainly contains a plotting function ggseg3d(), and data of two standard brain atlases (Desikan-Killiany and aseg). By far, the largest bit of the package is the data for each of the atlases. The functions and data enable users to plot tri-surface mesh plots of brain atlases, and customise these by projecting colours onto the brain segments based on values in their own data sets. Functions are wrappers for plotly'. Mowinckel & Vidal-Piñeiro (2020) <doi:10.1177/2515245920928009>.
This package provides tools for efficient processing of large, whole genome genotype data sets in variant call format (VCF). It includes several functions to calculate commonly used population genomic metrics and a method for reference panel free genotype imputation, which is described in the preprint Gurke & Mayer (2024) <doi:10.22541/au.172515591.10119928/v1>.
Interacts with the Glassdoor API <https://www.glassdoor.com/developer/index.htm>. Allows the user to search job statistics, employer statistics, and job progression, where Glassdoor provides a breakdown of other jobs a person did after their current one.
Integer programming models to assign students to groups by maximising diversity within groups, or by maximising preference scores for topics.
Quantification, analysis, and visualization of urban greenness within city networks using data from OpenStreetMap <https://www.openstreetmap.org>.
Utility functions to read, manipulate, analyse and write transit feeds in the General Transit Feed Specification (GTFS) data format.
Calculate different glucose variability measures, including average measures of glycemia, measures of glycemic variability and measures of glycemic risk, from continuous glucose monitoring data. Boris P. Kovatchev, Erik Otto, Daniel Cox, Linda Gonder-Frederick, and William Clarke (2006) <doi:10.2337/dc06-1085>. Jean-Pierre Le Floch, Philippe Escuyer, Eric Baudin, Dominique Baudon, and Leon Perlemuter (1990) <doi:10.2337/diacare.13.2.172>. C.M. McDonnell, S.M. Donath, S.I. Vidmar, G.A. Werther, and F.J. Cameron (2005) <doi:10.1089/dia.2005.7.253>. Everitt, Brian (1998) <doi:10.1111/j.1751-5823.2011.00149_2.x>. Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) <doi:10.2307/2234167>. Dougherty, R. L., Edelman, A. and Hyman, J. M. (1989) <doi:10.1090/S0025-5718-1989-0962209-1>. Tukey, J. W. (1977) <doi:10.1016/0377-2217(86)90209-2>. F. John Service (2013) <doi:10.2337/db12-1396>. Edmond A. Ryan, Tami Shandro, Kristy Green, Breay W. Paty, Peter A. Senior, David Bigam, A.M. James Shapiro, and Marie-Christine Vantyghem (2004) <doi:10.2337/diabetes.53.4.955>. F. John Service, George D. Molnar, John W. Rosevear, Eugene Ackerman, Leal C. Gatewood, William F. Taylor (1970) <doi:10.2337/diab.19.9.644>. Sarah E. Siegelaar, Frits Holleman, Joost B. L. Hoekstra, and J. Hans DeVries (2010) <doi:10.1210/er.2009-0021>. Gabor Marics, Zsofia Lendvai, Csaba Lodi, Levente Koncz, David Zakarias, Gyorgy Schuster, Borbala Mikos, Csaba Hermann, Attila J. Szabo, and Peter Toth-Heyn (2015) <doi:10.1186/s12938-015-0035-3>. Thomas Danne, Revital Nimri, Tadej Battelino, Richard M. Bergenstal, Kelly L. Close, J. Hans DeVries, SatishGarg, Lutz Heinemann, Irl Hirsch, Stephanie A. Amiel, Roy Beck, Emanuele Bosi, Bruce Buckingham, ClaudioCobelli, Eyal Dassau, Francis J. Doyle, Simon Heller, Roman Hovorka, Weiping Jia, Tim Jones, Olga Kordonouri,Boris Kovatchev, Aaron Kowalski, Lori Laffel, David Maahs, Helen R. Murphy, Kirsten Nørgaard, Christopher G.Parkin, Eric Renard, Banshi Saboo, Mauro Scharf, William V. Tamborlane, Stuart A. Weinzimer, and Moshe Phillip.International consensus on use of continuous glucose monitoring.Diabetes Care, 2017 <doi:10.2337/dc17-1600>.
Fits geographically weighted regression (GWR) models and has tools to diagnose and remediate collinearity in the GWR models. Also fits geographically weighted ridge regression (GWRR) and geographically weighted lasso (GWL) models. See Wheeler (2009) <doi:10.1068/a40256> and Wheeler (2007) <doi:10.1068/a38325> for more details.
This package provides an interface to the Gibbs SeaWater ('TEOS-10') C library, version 3.06-16-0 (commit 657216dd4f5ea079b5f0e021a4163e2d26893371', dated 2022-10-11, available at <https://github.com/TEOS-10/GSW-C>, which stems from Matlab and other code written by members of Working Group 127 of SCOR'/'IAPSO (Scientific Committee on Oceanic Research / International Association for the Physical Sciences of the Oceans).
Reproduce the halfnorm() function found in the faraway package using the ggplot2 API.
This package provides flexible tools for the visualization of genomic data. Supports interactive and static plots tailored for presentations and publications, with customizable features like colors, themes, and annotations to align with specific analytical and presentation goals.
Analyze small-sample clustered or longitudinal data with binary outcome using modified generalized estimating equations (GEE) with bias-adjusted covariance estimator. The package provides any combination of three GEE methods and 12 covariance estimators.
This package provides functions for rendering Bezier curves (Pomax, 2018) <https://pomax.github.io/bezierinfo/> in grid'. There is support for both quadratic and cubic Bezier curves. There are also functions for calculating points on curves, tangents to curves, and normals to curves.
Divide and conquer approach for estimating low-rank and sparse coefficient matrix in the generalized co-sparse factor regression. Please refer the manuscript Mishra, Aditya, Dipak K. Dey, Yong Chen, and Kun Chen. Generalized co-sparse factor regression. Computational Statistics & Data Analysis 157 (2021): 107127 for more details.
This package provides tools for the generalized logistic distribution (Type I, also known as skew-logistic distribution), encompassing basic distribution functions (p, q, d, r, score), maximum likelihood estimation, and structural change methods.
Datos de nombres inscritos en Chile entre 1920 y 2021, de acuerdo al Servicio de Registro Civil. English: Chilean baby names registered from 1920 to 2021 by the Civil Registry Service.
An implementation of SPRE (standardised predicted random-effects) statistics in R to explore heterogeneity in genetic association meta- analyses, as described by Magosi et al. (2019) <doi:10.1093/bioinformatics/btz590>. SPRE statistics are precision weighted residuals that indicate the direction and extent with which individual study-effects in a meta-analysis deviate from the average genetic effect. Overly influential positive outliers have the potential to inflate average genetic effects in a meta-analysis whilst negative outliers might lower or change the direction of effect. See the getspres website for documentation and examples <https://magosil86.github.io/getspres/>.
Writes SAS code to get predicted values from every tree of a gbm.object.
Functionalities for modelling functional data with multidimensional inputs, multivariate functional data, and non-separable and/or non-stationary covariance structure of function-valued processes. In addition, there are functionalities for functional regression models where the mean function depends on scalar and/or functional covariates and the covariance structure depends on functional covariates. The development version of the package can be found on <https://github.com/gpfda/GPFDA-dev>.
When you prepare a presentation or a report, you often need to manage a large number of ggplot figures. You need to change the figure size, modify the title, label, themes, etc. It is inconvenient to go back to the original code to make these changes. This package provides a simple way to manage ggplot figures. You can easily add the figure to the database and update them later using CLI (command line interface) or GUI (graphical user interface).
This package provides a framework to assist creation of marine ecosystem models, generating either R or C++ code which can then be optimised using the TMB package and standard R tools. Principally designed to reproduce gadget2 models in TMB', but can be extended beyond gadget2's capabilities. Kasper Kristensen, Anders Nielsen, Casper W. Berg, Hans Skaug, Bradley M. Bell (2016) <doi:10.18637/jss.v070.i05> "TMB: Automatic Differentiation and Laplace Approximation.". Begley, J., & Howell, D. (2004) <https://core.ac.uk/download/pdf/225936648.pdf> "An overview of Gadget, the globally applicable area-disaggregated general ecosystem toolbox. ICES.".
Supports modeling health outcomes using Bayesian hierarchical spatio-temporal models with complex covariate effects (e.g., linear, non-linear, interactions, distributed lag linear and non-linear models) in the INLA framework. It is designed to help users identify key drivers and predictors of disease risk by enabling streamlined model exploration, comparison, and visualization of complex covariate effects. See an application of the modelling framework in Lowe, Lee, O'Reilly et al. (2021) <doi:10.1016/S2542-5196(20)30292-8>.