Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Utilities to cost and evaluate Australian tax policy, including fast projections of personal income tax collections, high-performance tax and transfer calculators, and an interface to common indices from the Australian Bureau of Statistics. Written to support Grattan Institute's Australian Perspectives program, and related projects. Access to the Australian Taxation Office's sample files of personal income tax returns is assumed.
This package provides functions to estimate model parameters and forecast future volatilities using the Unified GARCH-Ito [Kim and Wang (2016) <doi:10.1016/j.jeconom.2016.05.003>] and Realized GARCH-Ito [Song et. al. (2020) <doi:10.1016/j.jeconom.2020.07.007>] models. Optimization is done using augmented Lagrange multiplier method.
This package provides functions to parse glycan structure text representations into glyrepr glycan structures. Currently, it supports StrucGP-style, pGlyco-style, IUPAC-condensed, IUPAC-extended, IUPAC-short, WURCS, Linear Code, and GlycoCT format. It also provides an automatic parser to detect the format and parse the structure string.
The Greymodels Shiny app is an interactive interface for statistical modelling and forecasting using grey-based models. It covers several state-of-the-art univariate and multivariate grey models. A user friendly interface allows users to easily compare the performance of different models for prediction and among others, visualize graphical plots of predicted values within user chosen confidence intervals. Chang, C. (2019) <doi:10.24818/18423264/53.1.19.11>, Li, K., Zhang, T. (2019) <doi:10.1007/s12667-019-00344-0>, Ou, S. (2012) <doi:10.1016/j.compag.2012.03.007>, Li, S., Zhou, M., Meng, W., Zhou, W. (2019) <doi:10.1080/23307706.2019.1666310>, Xie, N., Liu, S. (2009) <doi:10.1016/j.apm.2008.01.011>, Shao, Y., Su, H. (2012) <doi:10.1016/j.aasri.2012.06.003>, Xie, N., Liu, S., Yang, Y., Yuan, C. (2013) <doi:10.1016/j.apm.2012.10.037>, Li, S., Miao, Y., Li, G., Ikram, M. (2020) <doi:10.1016/j.matcom.2019.12.020>, Che, X., Luo, Y., He, Z. (2013) <doi:10.4028/www.scientific.net/AMM.364.207>, Zhu, J., Xu, Y., Leng, H., Tang, H., Gong, H., Zhang, Z. (2016) <doi:10.1109/appeec.2016.7779929>, Luo, Y., Liao, D. (2012) <doi:10.4028/www.scientific.net/AMR.507.265>, Bilgil, H. (2020) <doi:10.3934/math.2021091>, Li, D., Chang, C., Chen, W., Chen, C. (2011) <doi:10.1016/j.apm.2011.04.006>, Chen, C. (2008) <doi:10.1016/j.chaos.2006.08.024>, Zhou, W., Pei, L. (2020) <doi:10.1007/s00500-019-04248-0>, Xiao, X., Duan, H. (2020) <doi:10.1016/j.engappai.2019.103350>, Xu, N., Dang, Y. (2015) <doi:10.1155/2015/606707>, Chen, P., Yu, H.(2014) <doi:10.1155/2014/242809>, Zeng, B., Li, S., Meng, W., Zhang, D. (2019) <doi:10.1371/journal.pone.0221333>, Liu, L., Wu, L. (2021) <doi:10.1016/j.apm.2020.08.080>, Hu, Y. (2020) <doi:10.1007/s00500-020-04765-3>, Zhou, P., Ang, B., Poh, K. (2006) <doi:10.1016/j.energy.2005.12.002>, Cheng, M., Li, J., Liu, Y., Liu, B. (2020) <doi:10.3390/su12020698>, Wang, H., Wang, P., Senel, M., Li, T. (2019) <doi:10.1155/2019/9049815>, Ding, S., Li, R. (2020) <doi:10.1155/2020/4564653>, Zeng, B., Li, C. (2018) <doi:10.1016/j.cie.2018.02.042>, Xie, N., Liu, S. (2015) <doi:10.1109/JSEE.2015.00013>, Zeng, X., Yan, S., He, F., Shi, Y. (2019) <doi:10.1016/j.apm.2019.11.032>.
This package provides tools to download comprehensive datasets of local, state, and federal election results in Germany from 1990 to 2025. The package facilitates access to data on turnout, vote shares for major parties, and demographic information across different levels of government (municipal, state, and federal). It offers access to geographically harmonized datasets that account for changes in municipal boundaries over time and incorporate mail-in voting districts. Includes bundled county-level covariates from INKAR and municipality-level Census 2022 data. Users can easily retrieve, clean, and standardize German electoral data, making it ready for analysis. Data is sourced from <https://github.com/awiedem/german_election_data>.
This package provides tools for solving common geocaching puzzle types, and other Geocaching-related tasks.
Functional denoising and functional ANOVA through wavelet-domain Markov groves. Fore more details see: Ma L. and Soriano J. (2018) Efficient functional ANOVA through wavelet-domain Markov groves. <arXiv:1602.03990v2 [stat.ME]>.
Collection of packages for work with API Google Ads <https://developers.google.com/google-ads/api/docs/start>, Yandex Direct <https://yandex.ru/dev/direct/>, Yandex Metrica <https://yandex.ru/dev/metrika/>, MyTarget <https://target.my.com/help/advertisers/api_arrangement/ru>, Vkontakte <https://vk.com/dev/methods>, Facebook <https://developers.facebook.com/docs/marketing-apis/> and AppsFlyer <https://support.appsflyer.com/hc/en-us/articles/207034346-Using-Pull-API-aggregate-data>. This packages allows you loading data from ads account and manage your ads materials.
The function gggap() streamlines the creation of segments on the y-axis of ggplot2 plots which is otherwise not a trivial task to accomplish.
Data from multi environment agronomic trials, which are often carried out by plant breeders, can be analyzed with the tools offered by this package such as the Additive Main effects and Multiplicative Interaction model or AMMI ('Gauch 1992, ISBN:9780444892409) and the Site Regression model or SREG ('Cornelius 1996, <doi:10.1201/9780367802226>). Since these methods present a poor performance under the presence of outliers and missing values, this package includes robust versions of the AMMI model ('Rodrigues 2016, <doi:10.1093/bioinformatics/btv533>), and also imputation techniques specifically developed for this kind of data ('Arciniegas-Alarcón 2014, <doi:10.2478/bile-2014-0006>).
This package provides methods for model selection, estimation, inference, and simulation for the multilevel factor model, based on the principal component estimation and generalised canonical correlation approach. Details can be found in "Generalised Canonical Correlation Estimation of the Multilevel Factor Model." Lin and Shin (2025) <doi:10.2139/ssrn.4295429>.
This package provides functions for inference of ploidy from (Genotyping-by-sequencing) GBS data, including a function to infer allelic ratios and allelic proportions in a Bayesian framework.
On Galaxy platforms like Galaxy Europe <https://usegalaxy.eu>, many tools and workflows can run directly on a high-performance computer. GalaxyR connects R with Galaxy platforms API <https://usegalaxy.eu/api/docs> and allows credential management, uploading data, invoking workflows or tools, checking their status, and downloading results.
Estimating trait heritability and handling overfitting. This package includes a collection of functions for (1) estimating genetic variance-covariances and calculate trait heritability; and (2) handling overfitting by calculating the variance components and the heritability through cross validation.
This package contains a function called gds() which accepts three input parameters like lower limits, upper limits and the frequencies of the corresponding classes. The gds() function calculate and return the values of mean ('gmean'), median ('gmedian'), mode ('gmode'), variance ('gvar'), standard deviation ('gstdev'), coefficient of variance ('gcv'), quartiles ('gq1', gq2', gq3'), inter-quartile range ('gIQR'), skewness ('g1'), and kurtosis ('g2') which facilitate effective data analysis. For skewness and kurtosis calculations we use moments.
Probability propagation in Bayesian networks, also known as graphical independence networks. Documentation of the package is provided in vignettes included in the package and in the paper by Højsgaard (2012, <doi:10.18637/jss.v046.i10>). See citation("gRain") for details.
Likelihood inference in Gaussian copula marginal regression models.
This package implements the generalized propensity score cumulative distribution function proposed by Greene (2017) <https://digitalcommons.library.tmc.edu/dissertations/AAI10681743/>. A single scalar balancing score is calculated for any generalized propensity score vector with three or more treatments. This balancing score is used for propensity score matching and stratification in outcome analyses when analyzing either ordinal or multinomial treatments.
R Interface to C API of GLPK, depends on GLPK Version >= 4.42.
Projections are common dimensionality reduction methods, which represent high-dimensional data in a two-dimensional space. However, when restricting the output space to two dimensions, which results in a two dimensional scatter plot (projection) of the data, low dimensional similarities do not represent high dimensional distances coercively [Thrun, 2018] <DOI: 10.1007/978-3-658-20540-9>. This could lead to a misleading interpretation of the underlying structures [Thrun, 2018]. By means of the 3D topographic map the generalized Umatrix is able to depict errors of these two-dimensional scatter plots. The package is derived from the book of Thrun, M.C.: "Projection Based Clustering through Self-Organization and Swarm Intelligence" (2018) <DOI:10.1007/978-3-658-20540-9> and the main algorithm called simplified self-organizing map for dimensionality reduction methods is published in <DOI: 10.1016/j.mex.2020.101093>.
Reads annual and quarterly financial reports from companies traded at B3, the Brazilian exchange <https://www.b3.com.br/>. All data is downloaded and imported from CVM's public ftp site <https://dados.cvm.gov.br/dados/CIA_ABERTA/>.
Procedures for calculating variance components, study variation, percent study variation, and percent tolerance for gauge repeatability and reproducibility study. Methods included are ANOVA and Average / Range methods. Requires balanced study.
Fit joint models of survival and multivariate longitudinal data. The longitudinal data is specified by generalised linear mixed models. The joint models are fit via maximum likelihood using an approximate expectation maximisation algorithm. Bernhardt (2015) <doi:10.1016/j.csda.2014.11.011>.
Generalized Odds Rate Mixture Cure (GORMC) model is a flexible model of fitting survival data with a cure fraction, including the Proportional Hazards Mixture Cure (PHMC) model and the Proportional Odds Mixture Cure Model as special cases. This package fit the GORMC model with interval censored data.