Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a variety of functions to fit linear and nonlinear regression with a large selection of distributions.
An implementation of a new Gini covariance and correlation to measure dependence between a categorical and numerical variables. Dang, X., Nguyen, D., Chen, Y. and Zhang, J., (2018) <arXiv:1809.09793>.
This package provides a system for fitting Gompertz Curve in a Time Series Data.
This package provides a framework to assist creation of marine ecosystem models, generating either R or C++ code which can then be optimised using the TMB package and standard R tools. Principally designed to reproduce gadget2 models in TMB', but can be extended beyond gadget2's capabilities. Kasper Kristensen, Anders Nielsen, Casper W. Berg, Hans Skaug, Bradley M. Bell (2016) <doi:10.18637/jss.v070.i05> "TMB: Automatic Differentiation and Laplace Approximation.". Begley, J., & Howell, D. (2004) <https://files01.core.ac.uk/download/pdf/225936648.pdf> "An overview of Gadget, the globally applicable area-disaggregated general ecosystem toolbox. ICES.".
Set of routines for making map projections (forward and inverse), topographic maps, perspective plots, geological maps, geological map symbols, geological databases, interactive plotting and selection of focus regions.
This package provides functions for Gaussian and Non Gaussian (bivariate) spatial and spatio-temporal data analysis are provided for a) (fast) simulation of random fields, b) inference for random fields using standard likelihood and a likelihood approximation method called weighted composite likelihood based on pairs and b) prediction using (local) best linear unbiased prediction. Weighted composite likelihood can be very efficient for estimating massive datasets. Both regression and spatial (temporal) dependence analysis can be jointly performed. Flexible covariance models for spatial and spatial-temporal data on Euclidean domains and spheres are provided. There are also many useful functions for plotting and performing diagnostic analysis. Different non Gaussian random fields can be considered in the analysis. Among them, random fields with marginal distributions such as Skew-Gaussian, Student-t, Tukey-h, Sin-Arcsin, Two-piece, Weibull, Gamma, Log-Gaussian, Binomial, Negative Binomial and Poisson. See the URL for the papers associated with this package, as for instance, Bevilacqua and Gaetan (2015) <doi:10.1007/s11222-014-9460-6>, Bevilacqua et al. (2016) <doi:10.1007/s13253-016-0256-3>, Vallejos et al. (2020) <doi:10.1007/978-3-030-56681-4>, Bevilacqua et. al (2020) <doi:10.1002/env.2632>, Bevilacqua et. al (2021) <doi:10.1111/sjos.12447>, Bevilacqua et al. (2022) <doi:10.1016/j.jmva.2022.104949>, Morales-Navarrete et al. (2023) <doi:10.1080/01621459.2022.2140053>, and a large class of examples and tutorials.
These are GreedyExperimentalDesign Java dependency libraries. Note: this package has no functionality of its own and should not be installed as a standalone package without GreedyExperimentalDesign.
Generalized Linear Mixed Model (GLMM) for Binary Randomized Response Data. Includes Cauchit, Compl. Log-Log, Logistic, and Probit link functions for Bernoulli Distributed RR data. RR Designs: Warner, Forced Response, Unrelated Question, Kuk, Crosswise, and Triangular. Reference: Fox, J-P, Veen, D. and Klotzke, K. (2018). Generalized Linear Mixed Models for Randomized Responses. Methodology. <doi:10.1027/1614-2241/a000153>.
This package provides tools.
Makes the Genepop software available in R. This software implements a mixture of traditional population genetic methods and some more focused developments: it computes exact tests for Hardy-Weinberg equilibrium, for population differentiation and for genotypic disequilibrium among pairs of loci; it computes estimates of F-statistics, null allele frequencies, allele size-based statistics for microsatellites, etc.; and it performs analyses of isolation by distance from pairwise comparisons of individuals or population samples.
Implemented are the Wald-type statistic, a permuted version thereof as well as the ANOVA-type statistic for general factorial designs, even with non-normal error terms and/or heteroscedastic variances, for crossed designs with an arbitrary number of factors and nested designs with up to three factors. Friedrich et al. (2017) <doi:10.18637/jss.v079.c01>.
An interactive git user interface from the R command line. Intuitive tools to make commits, branches, remotes, and diffs an integrated part of R coding. Built on git2r, a system installation of git is not required and has default on-premises remote option.
Constructs gains tables and lift charts for prediction algorithms. Gains tables and lift charts are commonly used in direct marketing applications. The method is described in Drozdenko and Drake (2002), "Optimal Database Marketing", Chapter 11.
This package provides functions to assess the calibration of logistic regression models with the GiViTI (Gruppo Italiano per la Valutazione degli interventi in Terapia Intensiva, Italian Group for the Evaluation of the Interventions in Intensive Care Units - see <http://www.giviti.marionegri.it/>) approach. The approach consists in a graphical tool, namely the GiViTI calibration belt, and in the associated statistical test. These tools can be used both to evaluate the internal calibration (i.e. the goodness of fit) and to assess the validity of an externally developed model.
Genotyping of triploid individuals from luminescence data (marker probeset A and B). Works also for diploids. Two main functions: Run_Clustering() that regroups individuals with a same genotype based on proximity and Run_Genotyping() that assigns a genotype to each cluster. For Shiny interface use: launch_GenoShiny().
Guided partial least squares (guided-PLS) is the combination of partial least squares by singular value decomposition (PLS-SVD) and guided principal component analysis (guided-PCA). This package provides implementations of PLS-SVD, guided-PLS, and guided-PCA for supervised dimensionality reduction. The guided-PCA function (new in v1.1.0) automatically handles mixed data types (continuous and categorical) in the supervision matrix and provides detailed contribution analysis for interpretability. For the details of the methods, see the reference section of GitHub README.md <https://github.com/rikenbit/guidedPLS>.
Computation of Quantitative Trait Loci hits in the selected gene set. Performing gene set validation with Quantitative Trait Loci information. Performing gene set enrichment analysis with available Quantitative Trait Loci data and computation of statistical significance value from gene set analysis. Obtaining the list of Quantitative Trait Loci hit genes along with their overlapped Quantitative Trait Loci names.
Easy access to official spatial data sets of Brazil as sf objects in R. The package includes a wide range of geospatial data available at various geographic scales and for various years with harmonized attributes, projection and fixed topology.
Extend ggplot2 facets to panel layouts arranged in a grid with ragged edges. facet_ragged_rows() groups panels into rows that can vary in length, facet_ragged_cols() does the same but for columns. These can be useful, for example, to represent nested or partially crossed relationships between faceting variables.
An Rstudio addin for version control that allows users to clone repositories, create and delete branches, and sync forks on GitHub, GitLab, etc. Furthermore, the addin uses the GitLab API to allow instructors to create forks and merge requests for all students/teams with one click of a button.
Receives two vectors, computes appropriate function for group comparison (i.e., t-test, Mann-Whitney; equality of variances), and reports the findings (mean/median, standard deviation, test statistic, p-value, effect size) in APA format (Fay, M.P., & Proschan, M.A. (2010)<DOI: 10.1214/09-SS051>).
This package implements key features of Gephi for network visualization, including ForceAtlas2 (with LinLog mode), network scaling, and network rotations. It also includes easy network visualization tools such as edge and node color assignment for recreating Gephi'-style graphs in R. The package references layout algorithms developed by Jacomy, M., Venturini T., Heymann S., and Bastian M. (2014) <doi:10.1371/journal.pone.0098679> and Noack, A. (2009) <doi:10.48550/arXiv.0807.4052>.
This package implements functions and instruments for regression model building and its application to forecasting. The main scope of the package is in variables selection and models specification for cases of time series data. This includes promotional modelling, selection between different dynamic regressions with non-standard distributions of errors, selection based on cross validation, solutions to the fat regression model problem and more. Models developed in the package are tailored specifically for forecasting purposes. So as a results there are several methods that allow producing forecasts from these models and visualising them.
Create plots that combine a phylogeny and frequency dynamics. Phylogenetic input can be a generic adjacency matrix or a tree of class "phylo". Inspired by similar plots in publications of the labs of RE Lenski and JE Barrick. Named for HJ Muller (who popularised such plots) and H Wickham (whose code this package exploits).