Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a ggplot2 based implementation of biplots, giving a representation of a dataset in a two dimensional space accounting for the greatest variance, together with variable vectors showing how the data variables relate to this space. It provides a replacement for stats::biplot(), but with many enhancements to control the analysis and graphical display. It implements biplot and scree plot methods which can be used with the results of prcomp(), princomp(), FactoMineR::PCA(), ade4::dudi.pca() or MASS::lda() and can be customized using ggplot2 techniques.
Trace plots and convergence diagnostics for Markov Chain Monte Carlo (MCMC) algorithms on highly multivariate or unordered spaces. Methods outlined in a forthcoming paper.
This package implements a method of iteratively collapsing the rows of a contingency table, two at a time, by selecting the pair of categories whose combination yields a new table with the smallest loss of chi-squared, as described by Greenacre, M.J. (1988) <doi:10.1007/BF01901670>. The result is compatible with the class of object returned by the stats package's hclust() function and can be used similarly (plotted as a dendrogram, cut, etc.). Additional functions are provided for automatic cutting and diagnostic plotting.
Dynamically retrieve data from the web to render HTML tables on inspection in R Markdown HTML documents.
Estimate gender from names in Spanish and Portuguese. Works with vectors and dataframes. The estimation works not only for first names but also full names. The package relies on a compilation of common names with it's most frequent associated gender in both languages which are used as look up tables for gender inference.
Retrieving regional plant checklists, species traits and distributions, and environmental data from the Global Inventory of Floras and Traits (GIFT). More information about the GIFT database can be found at <https://gift.uni-goettingen.de/about> and the map of available floras can be visualized at <https://gift.uni-goettingen.de/map>. The API and associated queries can be accessed according the following scheme: <https://gift.uni-goettingen.de/api/extended/index2.0.php?query=env_raster>.
This package provides a minimal set of routines to calculate the Grantham distance <doi:10.1126/science.185.4154.862>. The Grantham distance attempts to provide a proxy for the evolutionary distance between two amino acids based on three key chemical properties: composition, polarity and molecular volume. In turn, evolutionary distance is used as a proxy for the impact of missense mutations. The higher the distance, the more deleterious the substitution is expected to be.
Currently provides geom_balance_of_trade(), a ggplot2 layer that fills the area between exports and imports series (with automatic crossing detection and conditional coloring for surplus vs. deficit), and overlays lines and points by default.
An iterative algorithm that improves the proximity matrix (PM) from a random forest (RF) and the resulting clusters as measured by the silhouette score.
Density, distribution function, quantile function, and random generation for the generalized Beta and Beta prime distributions. The family of generalized Beta distributions is conjugate for the Bayesian binomial model, and the generalized Beta prime distribution is the posterior distribution of the relative risk in the Bayesian two Poisson samples model when a Gamma prior is assigned to the Poisson rate of the reference group and a Beta prime prior is assigned to the relative risk. References: Laurent (2012) <doi:10.1214/11-BJPS139>, Hamza & Vallois (2016) <doi:10.1016/j.spl.2016.03.014>, Chen & Novick (1984) <doi:10.3102/10769986009002163>.
Two-step modeling with separation of sources of variation through analysis of variance and subsequent multivariate modeling through a range of unsupervised and supervised statistical methods. Separation can focus on removal of interfering effects or isolation of effects of interest. EF Mosleth et al. (2021) <doi:10.1038/s41598-021-82388-w> and EF Mosleth et al. (2020) <doi:10.1016/B978-0-12-409547-2.14882-6>.
Calculates the cost of crossing in terms of the number of individuals and generations, which is theoretically formulated by Servin et al. (2004) <DOI:10.1534/genetics.103.023358>. This package has been designed for selecting appropriate parental genotypes and find the most efficient crossing scheme for gene pyramiding, especially for plant breeding.
Provision of classes and methods for estimating generalized orthogonal GARCH models. This is an alternative approach to CC-GARCH models in the context of multivariate volatility modeling.
This package contains a function called gds() which accepts three input parameters like lower limits, upper limits and the frequencies of the corresponding classes. The gds() function calculate and return the values of mean ('gmean'), median ('gmedian'), mode ('gmode'), variance ('gvar'), standard deviation ('gstdev'), coefficient of variance ('gcv'), quartiles ('gq1', gq2', gq3'), inter-quartile range ('gIQR'), skewness ('g1'), and kurtosis ('g2') which facilitate effective data analysis. For skewness and kurtosis calculations we use moments.
Using the DNA sequence and gene annotation files provided in ENSEMBL <https://www.ensembl.org/index.html>, the functions implemented in the package try to find the DNA sequences and protein sequences of any given genomic loci, and to find the genomic coordinates and protein sequences of any given protein locations, which are the frequent tasks in the analysis of genomic and proteomic data.
Enables users to create simple plots of biological culture plates as well as microplates. Both continuous and discrete values can be plotted onto the plate layout.
This package provides a collection of datasets and simplified functions for an introductory (geo)statistics module at University College London. Provides functionality for compositional, directional and spatial data, including ternary diagrams, Wulff and Schmidt stereonets, and ordinary kriging interpolation. Implements logistic and (additive and centred) logratio transformations. Computes vector averages and concentration parameters for the von-Mises distribution. Includes a collection of natural and synthetic fractals, and a simulator for deterministic chaos using a magnetic pendulum example. The main purpose of these functions is pedagogical. Researchers can find more complete alternatives for these tools in other packages such as compositions', robCompositions', sp', gstat and RFOC'. All the functions are written in plain R, with no compiled code and a minimal number of dependencies. Theoretical background and worked examples are available at <https://tinyurl.com/UCLgeostats/>.
Wrapper around geom_histogram() of ggplot2 to plot the histogram of a numeric vector. This is especially useful, since qplot() was deprecated in ggplot2 3.4.0.
This package provides tools for creating publication-ready dimensionality reduction plots, including Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP). This package helps visualize high-dimensional data with options for custom labels, density plots, and faceting, using the ggplot2 framework Wickham (2016) <doi:10.1007/978-3-319-24277-4>.
When comparing discrete data mini bubble plots allow displaying more information than traditional bubble plots via colour, shape or labels. Exact overlapping coordinates will be transformed so they surround the original point circularly without overlapping. This is implemented as a position_surround() function for ggplot2'.
This package provides functions are provided for estimation, testing, diagnostic checking and forecasting of generalized linear autoregressive moving average (GLARMA) models for discrete valued time series with regression variables. These are a class of observation driven non-linear non-Gaussian state space models. The state vector consists of a linear regression component plus an observation driven component consisting of an autoregressive-moving average (ARMA) filter of past predictive residuals. Currently three distributions (Poisson, negative binomial and binomial) can be used for the response series. Three options (Pearson, score-type and unscaled) for the residuals in the observation driven component are available. Estimation is via maximum likelihood (conditional on initializing values for the ARMA process) optimized using Fisher scoring or Newton Raphson iterative methods. Likelihood ratio and Wald tests for the observation driven component allow testing for serial dependence in generalized linear model settings. Graphical diagnostics including model fits, autocorrelation functions and probability integral transform residuals are included in the package. Several standard data sets are included in the package.
This package provides a collection of palettes and themes for ggplot2', offering a light, pastel aesthetic. Syntax follows the viridis package.
We implement and extend the Dividing Local Gaussian Process algorithm by Lederer et al. (2020) <doi:10.48550/arXiv.2006.09446>. Its main use case is in online learning where it is used to train a network of local GPs (referred to as tree) by cleverly partitioning the input space. In contrast to a single GP, GPTreeO is able to deal with larger amounts of data. The package includes methods to create the tree and set its parameter, incorporating data points from a data stream as well as making joint predictions based on all relevant local GPs.
Implementation of several generalized F-statistics. The current version includes a generalized F-statistic based on the flexible isotonic/monotonic regression or order restricted hypothesis testing. Based on: Y. Lai (2011) <doi:10.1371/journal.pone.0019754>.