Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides methods for dividing data into groups. Create balanced partitions and cross-validation folds. Perform time series windowing and general grouping and splitting of data. Balance existing groups with up- and downsampling or collapse them to fewer groups.
Computing Global Sensitivity Indices from given data using Optimal Transport, as defined in Borgonovo et al (2024) <doi:10.1287/mnsc.2023.01796>. You provide an input sample, an output sample, decide the algorithm, and compute the indices.
Gaussian processes ('GPs') have been widely used to model spatial data, spatio'-temporal data, and computer experiments in diverse areas of statistics including spatial statistics, spatio'-temporal statistics, uncertainty quantification, and machine learning. This package creates basic tools for fitting and prediction based on GPs with spatial data, spatio'-temporal data, and computer experiments. Key characteristics for this GP tool include: (1) the comprehensive implementation of various covariance functions including the Matérn family and the Confluent Hypergeometric family with isotropic form, tensor form, and automatic relevance determination form, where the isotropic form is widely used in spatial statistics, the tensor form is widely used in design and analysis of computer experiments and uncertainty quantification, and the automatic relevance determination form is widely used in machine learning; (2) implementations via Markov chain Monte Carlo ('MCMC') algorithms and optimization algorithms for GP models with all the implemented covariance functions. The methods for fitting and prediction are mainly implemented in a Bayesian framework; (3) model evaluation via Fisher information and predictive metrics such as predictive scores; (4) built-in functionality for simulating GPs with all the implemented covariance functions; (5) unified implementation to allow easy specification of various GPs'.
Estimation of the cutpoint defined by the Generalized Symmetry point in a binary classification setting based on a continuous diagnostic test or marker. Two methods have been implemented to construct confidence intervals for this optimal cutpoint, one based on the Generalized Pivotal Quantity and the other based on Empirical Likelihood. Numerical and graphical outputs for these two methods are easily obtained.
Implementing generalized structured component analysis (GSCA) and its basic extensions, including constrained single and multiple group analysis, and second order latent variable modeling. For a comprehensive overview of GSCA, see Hwang & Takane (2014, ISBN: 9780367738754).
This package provides functions to compute the Generalized Dynamic Principal Components introduced in Peña and Yohai (2016) <DOI:10.1080/01621459.2015.1072542>. The implementation includes an automatic procedure proposed in Peña, Smucler and Yohai (2020) <DOI:10.18637/jss.v092.c02> for the identification of both the number of lags to be used in the generalized dynamic principal components as well as the number of components required for a given reconstruction accuracy.
Identifying spatially variable genes is critical in linking molecular cell functions with tissue phenotypes. This package implemented a granularity-based dimension-agnostic tool for the identification of spatially variable genes. The detailed description of this method is available at Wang, J. and Li, J. et al. 2023 (Wang, J. and Li, J. (2023), <doi:10.1038/s41467-023-43256-5>).
Gene-Ranking Analysis of Pathway Expression (GRAPE) is a tool for summarizing the consensus behavior of biological pathways in the form of a template, and for quantifying the extent to which individual samples deviate from the template. GRAPE templates are based only on the relative rankings of the genes within the pathway and can be used for classification of tissue types or disease subtypes. GRAPE can be used to represent gene-expression samples as vectors of pathway scores, where each pathway score indicates the departure from a given collection of reference samples. The resulting pathway- space representation can be used as the feature set for various applications, including survival analysis and drug-response prediction. Users of GRAPE should use the following citation: Klein MI, Stern DF, and Zhao H. GRAPE: A pathway template method to characterize tissue-specific functionality from gene expression profiles. BMC Bioinformatics, 18:317 (June 2017).
You can use this function to easily draw a combined histogram and restricted cubic spline. The function draws the graph through ggplot2'. RCS fitting requires the use of the rcs() function of the rms package. Can fit cox regression, logistic regression. This method was described by Per Kragh (2003) <doi:10.1002/sim.1497>.
Derives group sequential clinical trial designs and describes their properties. Particular focus on time-to-event, binary, and continuous outcomes. Largely based on methods described in Jennison, Christopher and Turnbull, Bruce W., 2000, "Group Sequential Methods with Applications to Clinical Trials" ISBN: 0-8493-0316-8.
This package provides methods and tools for the analysis of Genome Wide Identity-by-Descent ('gwid') mapping data, focusing on testing whether there is a higher occurrence of Identity-By-Descent (IBD) segments around potential causal variants in cases compared to controls, which is crucial for identifying rare variants. To enhance its analytical power, gwid incorporates a Sliding Window Approach, allowing for the detection and analysis of signals from multiple Single Nucleotide Polymorphisms (SNPs).
This package provides a method of recovering the precision matrix for Gaussian graphical models efficiently. Our approach could be divided into three categories. First of all, we use Hard Graphical Thresholding for best subset selection problem of Gaussian graphical model, and the core concept of this method was proposed by Luo et al. (2014) <arXiv:1407.7819>. Secondly, a closed form solution for graphical lasso under acyclic graph structure is implemented in our package (Fattahi and Sojoudi (2019) <https://jmlr.org/papers/v20/17-501.html>). Furthermore, we implement block coordinate descent algorithm to efficiently solve the covariance selection problem (Dempster (1972) <doi:10.2307/2528966>). Our package is computationally efficient and can solve ultra-high-dimensional problems, e.g. p > 10,000, in a few minutes.
Graph signals residing on the vertices of a graph have recently gained prominence in research in various fields. Many methodologies have been proposed to analyze graph signals by adapting classical signal processing tools. Recently, several notable graph signal decomposition methods have been proposed, which include graph Fourier decomposition based on graph Fourier transform, graph empirical mode decomposition, and statistical graph empirical mode decomposition. This package efficiently implements multiscale analysis applicable to various fields, and offers an effective tool for visualizing and decomposing graph signals. For the detailed methodology, see Ortega et al. (2018) <doi:10.1109/JPROC.2018.2820126>, Shuman et al. (2013) <doi:10.1109/MSP.2012.2235192>, Tremblay et al. (2014) <https://www.eurasip.org/Proceedings/Eusipco/Eusipco2014/HTML/papers/1569922141.pdf>, and Cho et al. (2024) "Statistical graph empirical mode decomposition by graph denoising and boundary treatment".
The American Association Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) BioPharma Collaborative represents a multi-year, multi-institution effort to build a pan-cancer repository of linked clinico-genomic data. The genomic and clinical data are provided in multiple releases (separate releases for each cancer cohort with updates following data corrections), which are stored on the data sharing platform Synapse <https://www.synapse.org/>. The genieBPC package provides a seamless way to obtain the data corresponding to each release from Synapse and to prepare datasets for analysis.
Two-Step Lasso (TS-Lasso) and compound minimum methods to recover the abundance of missing peaks in mass spectrum analysis. TS-Lasso is an imputation method that handles various types of missing peaks simultaneously. This package provides the procedure to generate missing peaks (or data) for simulation study, as well as a tool to estimate and visualize the proportion of missing at random.
This package provides functions to specify and fit generalized nonlinear models, including models with multiplicative interaction terms such as the UNIDIFF model from sociology and the AMMI model from crop science, and many others. Over-parameterized representations of models are used throughout; functions are provided for inference on estimable parameter combinations, as well as standard methods for diagnostics etc.
This package provides tools for decomposing Global Value Chain (GVC) participation and value-added trade. It implements the frameworks proposed by Borin and Mancini (2023) 10.1080/09535314.2022.2153221> for source-based and sink-based decompositions, and by Borin, Mancini, and Taglioni (2025) 10.1093/wber/lhaf017> for tripartite and output-based GVC measures.
This package implements a geographically weighted non-negative principal components analysis, which consists of the fusion of geographically weighted and sparse non-negative principal components analyses <doi:10.17608/k6.auckland.9850826.v1>.
Generates (U,W) mixture graphs where U is a line graph graphon and W is a dense graphon. Graphons are graph limits and graphon U can be written as sequence of positive numbers adding to 1. Graphs are sampled from U and W and joined randomly to obtain the mixture graph. Given a mixture graph, U can be inferred. Kandanaarachchi and Ong (2025) <doi:10.48550/arXiv.2505.13864>.
Aligns peak based on peak retention times and matches homologous peaks across samples. The underlying alignment procedure comprises three sequential steps. (1) Full alignment of samples by linear transformation of retention times to maximise similarity among homologous peaks (2) Partial alignment of peaks within a user-defined retention time window to cluster homologous peaks (3) Merging rows that are likely representing homologous substances (i.e. no sample shows peaks in both rows and the rows have similar retention time means). The algorithm is described in detail in Ottensmann et al., 2018 <doi:10.1371/journal.pone.0198311>.
This package provides a comprehensive suite of functions for processing and visualizing taxonomic data. It includes functionality to clean and transform taxonomic data, categorize it into hierarchical ranks (such as Phylum, Class, Order, Family, and Genus), and calculate the relative abundance of each category. The package also generates a color palette for visual representation of the taxonomic data, allowing users to easily identify and differentiate between various taxonomic groups. Additionally, it features a river plot visualization to effectively display the distribution of individuals across different taxonomic ranks, facilitating insights into taxonomic visualization.
This package provides a workflow for correction of Differential Interferometric Synthetic Aperture Radar (DInSAR) atmospheric delay base on Generic Atmospheric Correction Online Service for InSAR (GACOS) data and correction algorithms proposed by Chen Yu. This package calculate the Both Zenith and LOS direction (User Depend). You have to just download GACOS product on your area and preprocessed D-InSAR unwrapped images. Cite those references and this package in your work, when using this framework. References: Yu, C., N. T. Penna, and Z. Li (2017) <doi:10.1016/j.rse.2017.10.038>. Yu, C., Li, Z., & Penna, N. T. (2017) <doi:10.1016/j.rse.2017.10.038>. Yu, C., Penna, N. T., and Li, Z. (2017) <doi:10.1002/2016JD025753>.
Define, simulate, and validate stock-flow consistent (SFC) macroeconomic models. The godley R package offers tools to dynamically define model structures by adding variables and specifying governing systems of equations. With it, users can analyze how different macroeconomic structures affect key variables, perform parameter sensitivity analyses, introduce policy shocks, and visualize resulting economic scenarios. The accounting structure of SFC models follows the approach outlined in the seminal study by Godley and Lavoie (2007, ISBN:978-1-137-08599-3), ensuring a comprehensive integration of all economic flows and stocks. The algorithms implemented to solve the models are based on methodologies from Kinsella and O'Shea (2010) <doi:10.2139/ssrn.1729205>, Peressini and Sullivan (1988, ISBN:0-387-96614-5), and contributions by Joao Macalos.
Large language models are readily accessible via API. This package lowers the barrier to use the API inside of your development environment. For more on the API, see <https://platform.openai.com/docs/introduction>.