Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a ggplot2 extension that allows text to follow curved paths. Curved text makes it easier to directly label paths or neatly annotate in polar co-ordinates.
This package provides a wrapper of different standard estimation methods for gravity models. This package provides estimation methods for log-log models and multiplicative models.
Simulation and analysis of graded response data with different types of estimators. Also, an interactive shiny application is provided with graphics for characteristic and information curves. Samejima (2018) <doi:10.1007/978-1-4757-2691-6_5>.
In computationally demanding data analysis pipelines, the targets R package (2021, <doi:10.21105/joss.02959>) maintains an up-to-date set of results while skipping tasks that do not need to rerun. This process increases speed and increases trust in the final end product. However, it also overwrites old output with new output, and past results disappear by default. To preserve historical output, the gittargets package captures version-controlled snapshots of the data store, and each snapshot links to the underlying commit of the source code. That way, when the user rolls back the code to a previous branch or commit, gittargets can recover the data contemporaneous with that commit so that all targets remain up to date.
Estimates statistically significant marker combination values within which one immunologically distinctive group (i.e., disease case) is more associated than another group (i.e., healthy control), successively, using various combinations (i.e., "gates") of markers to examine features of cells that may be different between groups. For a two-group comparison, the gateR package uses the spatial relative risk function estimated using the sparr package. Details about the sparr package methods can be found in the tutorial: Davies et al. (2018) <doi:10.1002/sim.7577>. Details about kernel density estimation can be found in J. F. Bithell (1990) <doi:10.1002/sim.4780090616>. More information about relative risk functions using kernel density estimation can be found in J. F. Bithell (1991) <doi:10.1002/sim.4780101112>.
This package provides functions for drawing scene trees representing scenes that have been drawn using grid graphics.
Convert GDP time series data from one unit to another. All common GDP units are included, i.e. current and constant local currency units, US$ via market exchange rates and international dollars via purchasing power parities.
This package provides a toolkit with functions to fit, plot, summarize, and apply Generalized Dissimilarity Models. Mokany K, Ware C, Woolley SNC, Ferrier S, Fitzpatrick MC (2022) <doi:10.1111/geb.13459> Ferrier S, Manion G, Elith J, Richardson K (2007) <doi:10.1111/j.1472-4642.2007.00341.x>.
Multivariate time series analysis based on Generalized Space-Time Autoregressive Model by Ruchjana et al.(2012) <doi:10.1063/1.4724118>.
This function converts mfpr, numeric, or character strings representing numbers to bigq format without loss of precision.
Simulating single cell RNA-seq data with complicated structure. This package is developed based on the Splat method (Zappia, Phipson and Oshlack (2017) <doi:10.1186/s13059-017-1305-0>). GeneScape incorporates additional features to simulate single cell RNA-seq data with complicated differential expression and correlation structures, such as sub-cell-types, correlated genes (pathway genes) and hub genes.
Design of group sequential trials, including non-binding futility analysis at multiple time points (Gallo, Mao, and Shih, 2014, <doi:10.1080/10543406.2014.932285>).
This package provides a collection of Geoms for R's ggplot2 library. geom_shadowpath(), geom_shadowline(), geom_shadowstep() and geom_shadowpoint() functions draw a shadow below lines to make busy plots more aesthetically pleasing. geom_glowpath(), geom_glowline(), geom_glowstep() and geom_glowpoint() add a neon glow around lines to get a steampunk style.
Duct tape the quanteda ecosystem (Benoit et al., 2018) <doi:10.21105/joss.00774> to modern Transformer-based text classification models (Wolf et al., 2020) <doi:10.18653/v1/2020.emnlp-demos.6>, in order to facilitate supervised machine learning for textual data. This package mimics the behaviors of quanteda.textmodels and provides a function to setup the Python environment to use the pretrained models from Hugging Face <https://huggingface.co/>. More information: <doi:10.5117/CCR2023.1.003.CHAN>.
This package provides functions to estimate model parameters and forecast future volatilities using the Unified GARCH-Ito [Kim and Wang (2016) <doi:10.1016/j.jeconom.2016.05.003>] and Realized GARCH-Ito [Song et. al. (2020) <doi:10.1016/j.jeconom.2020.07.007>] models. Optimization is done using augmented Lagrange multiplier method.
Insert tables created by the gt R package into Microsoft Word documents. This gives users the ability to add to their existing word documents the tables made in gt using the familiar officer package and syntax from the officeverse'.
We define generalized multipartite networks as the joint observation of several networks implying some common pre-specified groups of individuals. The aim is to fit an adapted version of the popular stochastic block model to multipartite networks, as described in Bar-hen, Barbillon and Donnet (2020) <arXiv:1807.10138>.
This package provides a path-following algorithm for L1 regularized generalized linear models and Cox proportional hazards model.
This package provides a gate-keeping procedure to test a primary and a secondary endpoint in a group sequential design with multiple interim looks. Computations related to group sequential primary and secondary boundaries. Refined secondary boundaries are calculated for a gate-keeping test on a primary and a secondary endpoint in a group sequential design with multiple interim looks. The choices include both the standard boundaries and the boundaries using error spending functions. See Tamhane et al. (2018), "A gatekeeping procedure to test a primary and a secondary endpoint in a group sequential design with multiple interim looks", Biometrics, 74(1), 40-48.
The algorithm of semi-supervised learning is based on finite Gaussian mixture models and includes a mechanism for handling missing data. It aims to fit a g-class Gaussian mixture model using maximum likelihood. The algorithm treats the labels of unclassified features as missing data, building on the framework introduced by Rubin (1976) <doi:10.2307/2335739> for missing data analysis. By taking into account the dependencies in the missing pattern, the algorithm provides more information for determining the optimal classifier, as specified by Bayes rule.
Homogenize GNSS (Global Navigation Satellite System) time-series. The general model is a segmentation in the mean model including a periodic function and considering monthly variances, see Quarello (2020) <arXiv:2005.04683>.
Estimation of the variogram through trimmed mean, radial basis functions (optimization, prediction and cross-validation), summary statistics from cross-validation, pocket plot, and design of optimal sampling networks through sequential and simultaneous points methods.
Implementation of global envelopes for a set of general d-dimensional vectors T in various applications. A 100(1-alpha)% global envelope is a band bounded by two vectors such that the probability that T falls outside this envelope in any of the d points is equal to alpha. Global means that the probability is controlled simultaneously for all the d elements of the vectors. The global envelopes can be used for graphical Monte Carlo and permutation tests where the test statistic is a multivariate vector or function (e.g. goodness-of-fit testing for point patterns and random sets, functional analysis of variance, functional general linear model, n-sample test of correspondence of distribution functions), for central regions of functional or multivariate data (e.g. outlier detection, functional boxplot) and for global confidence and prediction bands (e.g. confidence band in polynomial regression, Bayesian posterior prediction). See Myllymäki and MrkviÄ ka (2024) <doi:10.18637/jss.v111.i03>, Myllymäki et al. (2017) <doi:10.1111/rssb.12172>, MrkviÄ ka and Myllymäki (2023) <doi:10.1007/s11222-023-10275-7>, MrkviÄ ka et al. (2016) <doi:10.1016/j.spasta.2016.04.005>, MrkviÄ ka et al. (2017) <doi:10.1007/s11222-016-9683-9>, MrkviÄ ka et al. (2020) <doi:10.14736/kyb-2020-3-0432>, MrkviÄ ka et al. (2021) <doi:10.1007/s11009-019-09756-y>, Myllymäki et al. (2021) <doi:10.1016/j.spasta.2020.100436>, MrkviÄ ka et al. (2022) <doi:10.1002/sim.9236>, Dai et al. (2022) <doi:10.5772/intechopen.100124>, DvoŠák and MrkviÄ ka (2022) <doi:10.1007/s00180-021-01134-y>, MrkviÄ ka et al. (2023) <doi:10.48550/arXiv.2309.04746>, and Konstantinou et al. (2024) <doi: 10.1007/s00180-024-01569-z>.
Platform dedicated to the Global Modelling technique. Its aim is to obtain ordinary differential equations of polynomial form directly from time series. It can be applied to single or multiple time series under various conditions of noise, time series lengths, sampling, etc. This platform is developped at the Centre d'Etudes Spatiales de la Biosphere (CESBIO), UMR 5126 UPS/CNRS/CNES/IRD, 18 av. Edouard Belin, 31401 TOULOUSE, FRANCE. The developments were funded by the French program Les Enveloppes Fluides et l'Environnement (LEFE, MANU, projets GloMo, SpatioGloMo and MoMu). The French program Defi InFiNiTi (CNRS) and PNTS are also acknowledged (projects Crops'IChaos and Musc & SlowFast). The method is described in the article : Mangiarotti S. and Huc M. (2019) <doi:10.1063/1.5081448>.