Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools to adjust estimates of learning for guessing-related bias in educational and survey research. Implements standard guessing correction methods and a sophisticated latent class model that leverages informative pre-post test transitions to account for guessing behavior. The package helps researchers obtain more accurate estimates of actual learning when respondents may guess on closed-ended knowledge items. For theoretical background and empirical validation, see Cor and Sood (2018) <https://gsood.com/research/papers/guess.pdf>.
This package provides a collection of functions for testing randomness (or mutual independence) in linear and circular data as proposed in Gehlot and Laha (2025a) <doi:10.48550/arXiv.2506.21157> and Gehlot and Laha (2025b) <doi:10.48550/arXiv.2506.23522>, respectively.
When comparing discrete data mini bubble plots allow displaying more information than traditional bubble plots via colour, shape or labels. Exact overlapping coordinates will be transformed so they surround the original point circularly without overlapping. This is implemented as a position_surround() function for ggplot2'.
Interact with the Google Tag Manager API <https://developers.google.com/tag-platform/tag-manager/api/v2>, enabling scripted deployments and updates across multiple tags, triggers, variables and containers.
This package provides automated downloading, parsing, cleaning, unit conversion and formatting of Global Surface Summary of the Day ('GSOD') weather data from the from the USA National Centers for Environmental Information ('NCEI'). Units are converted from from United States Customary System ('USCS') units to International System of Units ('SI'). Stations may be individually checked for number of missing days defined by the user, where stations with too many missing observations are omitted. Only stations with valid reported latitude and longitude values are permitted in the final data. Additional useful elements, saturation vapour pressure ('es'), actual vapour pressure ('ea') and relative humidity ('RH') are calculated from the original data using the improved August-Roche-Magnus approximation (Alduchov & Eskridge 1996) and included in the final data set. The resulting metadata include station identification information, country, state, latitude, longitude, elevation, weather observations and associated flags. For information on the GSOD data from NCEI', please see the GSOD readme.txt file available from, <https://www1.ncdc.noaa.gov/pub/data/gsod/readme.txt>.
Factor analysis implementation for multiple data sources, i.e., for groups of variables. The whole data analysis pipeline is provided, including functions and recommendations for data normalization and model definition, as well as missing value prediction and model visualization. The model group factor analysis (GFA) is inferred with Gibbs sampling, and it has been presented originally by Virtanen et al. (2012), and extended in Klami et al. (2015) <DOI:10.1109/TNNLS.2014.2376974> and Bunte et al. (2016) <DOI:10.1093/bioinformatics/btw207>; for details, see the citation info.
One can find single-stage and two-stage designs for a phase II single-arm study with either efficacy or safety/toxicity endpoints as described in Kim and Wong (2019) <doi:10.29220/CSAM.2019.26.2.163>.
Efficiently manage and process data from oTree experiments. Import oTree data and clean them by using functions that handle messy data, dropouts, and other problematic cases. Create IDs, calculate the time, transfer variables between app data frames, and delete sensitive information. Review your experimental data prior to running the experiment and automatically generate a detailed summary of the variables used in your oTree code. Information on oTree is found in Chen, D. L., Schonger, M., & Wickens, C. (2016) <doi:10.1016/j.jbef.2015.12.001>.
Modern Parallel Coordinate Plots have been introduced in the 1980s as a way to visualize arbitrarily many numeric variables. This Grammar of Graphics implementation also incorporates categorical variables into the plots in a principled manner. By separating the data managing part from the visual rendering, we give full access to the users while keeping the number of parameters manageably low.
This package provides functions for efficiently fitting linear models with spatially correlated errors by robust (Kuensch et al. (2011) <doi:10.3929/ethz-a-009900710>) and Gaussian (Harville (1977) <doi:10.1080/01621459.1977.10480998>) (Restricted) Maximum Likelihood and for computing robust and customary point and block external-drift Kriging predictions (Cressie (1993) <doi:10.1002/9781119115151>), along with utility functions for variogram modelling in ad hoc geostatistical analyses, model building, model evaluation by cross-validation, (conditional) simulation of Gaussian processes (Davies and Bryant (2013) <doi:10.18637/jss.v055.i09>), unbiased back-transformation of Kriging predictions of log-transformed data (Cressie (2006) <doi:10.1007/s11004-005-9022-8>).
Computational intensive calculations for Generalized Additive Models for Location Scale and Shape, <doi:10.1111/j.1467-9876.2005.00510.x>.
Generalized Entropy Calibration produces calibration weights using generalized entropy as the objective function for optimization. This approach, as implemented in the GECal package, is based on Kwon, Kim, and Qiu (2024) <doi:10.48550/arXiv.2404.01076>. GECal incorporates design weights into the constraints to maintain design consistency, rather than including them in the objective function itself.
Create a grid-based graphviz using the following functions: 1 - Creating the data.frame where the nodes are; 2 - Adding and editing nodes; 3 - Plotting these nodes.
This package provides a ggplot2 extension that enables robust image grobs in panels and theme elements.
Datos de nombres inscritos en Chile entre 1920 y 2021, de acuerdo al Servicio de Registro Civil. English: Chilean baby names registered from 1920 to 2021 by the Civil Registry Service.
The Geocoordinate Validation Service (GVS) runs checks of coordinates in latitude/longitude format. It returns annotated coordinates with additional flags and metadata that can be used in data cleaning. Additionally, the package has functions related to attribution and metadata information. More information can be found at <https://github.com/ojalaquellueva/gvs/tree/master/api>.
This package provides a simple wrapper for Wikipedia data. Specifically, this package looks to fill a gap in retrieving text data in a tidy format that can be used for Natural Language Processing.
Data sets used in the book "R Graphics Cookbook" by Winston Chang, published by O'Reilly Media.
An excerpt of the data available at Gapminder.org. For each of 142 countries, the package provides values for life expectancy, GDP per capita, and population, every five years, from 1952 to 2007.
The Grouphmap was implemented in R, an open-source programming environment, and was released under the provided website. The difference analysis is based on the limma package, which can cover gene and protein expression profiles (Reference: Matthew E Ritchie , Belinda Phipson , Di Wu , Yifang Hu , Charity W Law , Wei Shi , Gordon K Smyth (2015) <doi:10.1093/nar/gkv007>). The GO enrichment analysis is based on the clusterProfiler package and supports three common species: human, mouse, and yeast (Reference: Guangchuang Yu, Li-Gen Wang, Yanyan Han, Qing-Yu He (2012) <doi:10.1089/omi.2011.0118>). The results of batch difference analysis and enrichment analysis are output in separate folders for easy viewing and further visualization of the results during the process. The results returned a heatmap in R and exported to 3 folders named DEG, go, and merge.
Connecting spatiotemporal exposure to individual and population-level risk via source-to-outcome continuum modeling. The package, methods, and case-studies are described in Messier, Reif, and Marvel (2025) <doi:10.1186/s40246-024-00711-8> and Eccles et al. (2023) <doi:10.1016/j.scitotenv.2022.158905>.
Dependency-free, ultra fast calculation of geodesic distances. Includes the reference nanometre-accuracy geodesic distances of Karney (2013) <doi:10.1007/s00190-012-0578-z>, as used by the sf package, as well as Haversine and Vincenty distances. Default distance measure is the "Mapbox cheap ruler" which is generally more accurate than Haversine or Vincenty for distances out to a few hundred kilometres, and is considerably faster. The main function accepts one or two inputs in almost any generic rectangular form, and returns either matrices of pairwise distances, or vectors of sequential distances.
We implement various classical tests for the composite hypothesis of testing the fit to the family of gamma distributions as the Kolmogorov-Smirnov test, the Cramer-von Mises test, the Anderson Darling test and the Watson test. For each test a parametric bootstrap procedure is implemented, as considered in Henze, Meintanis & Ebner (2012) <doi:10.1080/03610926.2010.542851>. The recent procedures presented in Henze, Meintanis & Ebner (2012) <doi:10.1080/03610926.2010.542851> and Betsch & Ebner (2019) <doi:10.1007/s00184-019-00708-7> are implemented. Estimation of parameters of the gamma law are implemented using the method of Bhattacharya (2001) <doi:10.1080/00949650108812100>.
Tool for import and process data from Lattes curriculum platform (<http://lattes.cnpq.br/>). The Brazilian government keeps an extensive base of curricula for academics from all over the country, with over 5 million registrations. The academic life of the Brazilian researcher, or related to Brazilian universities, is documented in Lattes'. Some information that can be obtained: professional formation, research area, publications, academics advisories, projects, etc. getLattes package allows work with Lattes data exported to XML format.