Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementation of the Generalized Score Matching estimator in Yu et al. (2019) <https://jmlr.org/papers/v20/18-278.html> for non-negative graphical models (truncated Gaussian, exponential square-root, gamma, a-b models) and univariate truncated Gaussian distributions. Also includes the original estimator for untruncated Gaussian graphical models from Lin et al. (2016) <doi:10.1214/16-EJS1126>, with the addition of a diagonal multiplier.
Computes the gravitational and magnetic anomalies generated by 3-D vertical rectangular prisms at specific observation points using the method of Plouff (1976) <doi:10.1190/1.1440645>.
This package provides two new layer types for displaying image data as layers within the Grammar of Graphics framework. Displays images using either a rectangle interface, with a fixed bounding box, or a point interface using a central point and general size parameter. Images can be given as local JPEG or PNG files, external resources, or as a list column containing raster image data.
This package provides a suite of function-building tools centered around a (forward) composition operator, %>>>%, which extends the semantics of the magrittr %>% operator and supports Tidyverse quasiquotation. It enables you to construct composite functions that can be inspected and transformed as list-like objects. In conjunction with %>>>%, a compact function constructor, fn(), and a partial-application constructor, partial(), are also provided; both support quasiquotation.
This package provides a suite of tools for specifying and examining experimental designs related to choice response time models (e.g., the Diffusion Decision Model). This package allows users to define how experimental factors influence one or more model parameters using R-style formula syntax, while also checking the logical consistency of these associations. Additionally, it integrates with the ggdmc package, which employs Differential Evolution Markov Chain Monte Carlo (DE-MCMC) sampling to optimise model parameters. For further details on the model-building approach, see Heathcote, Lin, Reynolds, Strickland, Gretton, and Matzke (2019) <doi:10.3758/s13428-018-1067-y>.
This package provides functions are provided for quantifying evolution and selection on complex traits. The package implements effective handling and analysis algorithms scaled for genome-wide data and calculates a composite statistic, denoted Ghat, which is used to test for selection on a trait. The package provides a number of simple examples for handling and analysing the genome data and visualising the output and results. Beissinger et al., (2018) <doi:10.1534/genetics.118.300857>.
This package provides a collection of methods to determine growth rates from experimental data, in particular from batch experiments and plate reader trials.
Flexible and robust estimation and inference of Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models with covariates ('X') based on the results by Francq and Thieu (2019) <doi:10.1017/S0266466617000512>. Coefficients can straightforwardly be set to zero by omission, and quasi maximum likelihood methods ensure estimates are generally consistent and inference valid, even when the standardised innovations are non-normal and/or dependent over time. See <doi:10.32614/RJ-2021-057> for an overview of the package.
This package provides a reproducible pipeline to conduct genomeâ wide association studies (GWAS) and extract singleâ nucleotide polymorphisms (SNPs) for a human trait or disease. Given aggregated GWAS dataset(s) and a userâ defined significance threshold, the package retrieves significant SNPs from the GWAS Catalog and the Experimental Factor Ontology (EFO), annotates their gene context, and can write a harmonised metadata table in comma-separated values (CSV) format, genomic intervals in the Browser Extensible Data (BED) format, and sequences in the FASTA (text-based sequence) format with user-defined flanking regions for clustered regularly interspaced short palindromic repeats (CRISPR) guide design. For details on the resources and methods see: Buniello et al. (2019) <doi:10.1093/nar/gky1120>; Sollis et al. (2023) <doi:10.1093/nar/gkac1010>; Jinek et al. (2012) <doi:10.1126/science.1225829>; Malone et al. (2010) <doi:10.1093/bioinformatics/btq099>; Experimental Factor Ontology (EFO) <https://www.ebi.ac.uk/efo>.
Ease the transition between R vectors and markdown text. With gluedown and rmarkdown', users can create traditional vectors in R, glue those strings together with the markdown syntax, and print those formatted vectors directly to the document. This package primarily uses GitHub Flavored Markdown (GFM), an offshoot of the unambiguous CommonMark specification by John MacFarlane (2019) <https://spec.commonmark.org/>.
This package provides functions to help with creating sparklines in the style of Edward Tufte <https://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0001OR&topic_id=1> in ggplot2'. It computes ribbon geoms with the interquartile ranges and points and/or labels at the beginning, end, max, and min points.
Read, manipulate, and digitize landmark data, generate shape variables via Procrustes analysis for points, curves and surfaces, perform shape analyses, and provide graphical depictions of shapes and patterns of shape variation.
Calculates Agresti's generalized odds ratios. For a randomly selected pair of observations from two groups, calculates the odds that the second group will have a higher scoring outcome than that of the first group. Package provides hypothesis testing for if this odds ratio is significantly different to 1 (equal chance).
Estimates a collection of time-indexed functions under either of Gaussian process (GP) or intrinsic Gaussian Markov random field (iGMRF) prior formulations where a Dirichlet process mixture allows sub-groupings of the functions to share the same covariance or precision parameters. The GP and iGMRF formulations both support any number of additive covariance or precision terms, respectively, expressing either or both of multiple trend and seasonality.
Understanding how features influence a specific response variable becomes crucial in classification problems, with applications ranging from medical diagnosis to customer behavior analysis. This packages provides tools to compute such an influence measure grounded on game theory concepts. In particular, the influence measures presented in Davila-Pena, Saavedra-Nieves, and Casas-Méndez (2024) <doi:10.48550/arXiv.2408.02481> can be obtained.
Fits high dimensional penalized generalized linear mixed models using the Monte Carlo Expectation Conditional Minimization (MCECM) algorithm. The purpose of the package is to perform variable selection on both the fixed and random effects simultaneously for generalized linear mixed models. The package supports fitting of Binomial, Gaussian, and Poisson data with canonical links, and supports penalization using the MCP, SCAD, or LASSO penalties. The MCECM algorithm is described in Rashid et al. (2020) <doi:10.1080/01621459.2019.1671197>. The techniques used in the minimization portion of the procedure (the M-step) are derived from the procedures of the ncvreg package (Breheny and Huang (2011) <doi:10.1214/10-AOAS388>) and grpreg package (Breheny and Huang (2015) <doi:10.1007/s11222-013-9424-2>), with appropriate modifications to account for the estimation and penalization of the random effects. The ncvreg and grpreg packages also describe the MCP, SCAD, and LASSO penalties.
This package provides functions to assess the goodness of fit of binary, multinomial and ordinal logistic models. Included are the Hosmer-Lemeshow tests (binary, multinomial and ordinal) and the Lipsitz and Pulkstenis-Robinson tests (ordinal).
Identifies biomarkers that exhibit differential response dynamics by time across groups and estimates kinetic properties of biomarkers.
This package provides a method of recovering the precision matrix for Gaussian graphical models efficiently. Our approach could be divided into three categories. First of all, we use Hard Graphical Thresholding for best subset selection problem of Gaussian graphical model, and the core concept of this method was proposed by Luo et al. (2014) <arXiv:1407.7819>. Secondly, a closed form solution for graphical lasso under acyclic graph structure is implemented in our package (Fattahi and Sojoudi (2019) <https://jmlr.org/papers/v20/17-501.html>). Furthermore, we implement block coordinate descent algorithm to efficiently solve the covariance selection problem (Dempster (1972) <doi:10.2307/2528966>). Our package is computationally efficient and can solve ultra-high-dimensional problems, e.g. p > 10,000, in a few minutes.
Population-averaged models have been increasingly used in the design and analysis of cluster randomized trials (CRTs). To facilitate the applications of population-averaged models in CRTs, the package implements the generalized estimating equations (GEE) and matrix-adjusted estimating equations (MAEE) approaches to jointly estimate the marginal mean models correlation models both for general CRTs and stepped wedge CRTs. Despite the general GEE/MAEE approach, the package also implements a fast cluster-period GEE method by Li et al. (2022) <doi:10.1093/biostatistics/kxaa056> specifically for stepped wedge CRTs with large and variable cluster-period sizes and gives a simple and efficient estimating equations approach based on the cluster-period means to estimate the intervention effects as well as correlation parameters. In addition, the package also provides functions for generating correlated binary data with specific mean vector and correlation matrix based on the multivariate probit method in Emrich and Piedmonte (1991) <doi:10.1080/00031305.1991.10475828> or the conditional linear family method in Qaqish (2003) <doi:10.1093/biomet/90.2.455>.
Detailed functionality for working with the univariate and multivariate Generalized Hyperbolic distribution and its special cases (Hyperbolic (hyp), Normal Inverse Gaussian (NIG), Variance Gamma (VG), skewed Student-t and Gaussian distribution). Especially, it contains fitting procedures, an AIC-based model selection routine, and functions for the computation of density, quantile, probability, random variates, expected shortfall and some portfolio optimization and plotting routines as well as the likelihood ratio test. In addition, it contains the Generalized Inverse Gaussian distribution. See Chapter 3 of A. J. McNeil, R. Frey, and P. Embrechts. Quantitative risk management: Concepts, techniques and tools. Princeton University Press, Princeton (2005).
The first major functionality is to compute the bias in regression coefficients of misspecified linear gene-environment interaction models. The most generalized function for this objective is GE_bias(). However GE_bias() requires specification of many higher order moments of covariates in the model. If users are unsure about how to calculate/estimate these higher order moments, it may be easier to use GE_bias_normal_squaredmis(). This function places many more assumptions on the covariates (most notably that they are all jointly generated from a multivariate normal distribution) and is thus able to automatically calculate many of the higher order moments automatically, necessitating only that the user specify some covariances. There are also functions to solve for the bias through simulation and non-linear equation solvers; these can be used to check your work. Second major functionality is to implement the Bootstrap Inference with Correct Sandwich (BICS) testing procedure, which we have found to provide better finite-sample performance than other inference procedures for testing GxE interaction. More details on these functions are available in Sun, Carroll, Christiani, and Lin (2018) <doi:10.1111/biom.12813>.
This package provides a framework to detect Differential Item Functioning (DIF) in Generalized Partial Credit Models (GPCM) and special cases of the GPCM as proposed by Schauberger and Mair (2019) <doi:10.3758/s13428-019-01224-2>. A joint model is set up where DIF is explicitly parametrized and penalized likelihood estimation is used for parameter selection. The big advantage of the method called GPCMlasso is that several variables can be treated simultaneously and that both continuous and categorical variables can be used to detect DIF.
R function gawdis() produces multi-trait dissimilarity with more uniform contributions of different traits. de Bello et al. (2021) <doi:10.1111/2041-210X.13537> presented the approach based on minimizing the differences in the correlation between the dissimilarity of each trait, or groups of traits, and the multi-trait dissimilarity. This is done using either an analytic or a numerical solution, both available in the function.