Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a function to calibrate variant effect scores against evidence strength categories defined by the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) guidelines. The method computes likelihood ratios of pathogenicity via kernel density estimation of pathogenic and benign score distributions, and derives score intervals corresponding to ACMG/AMP evidence levels. This enables researchers and clinical geneticists to interpret functional and computational variant scores in a reproducible and standardised manner. For details, see Badonyi and Marsh (2025) <doi:10.1093/bioinformatics/btaf503>.
Automatically generate a changelog file (NEWS.md / CHANGELOG.md) from the git history using conventional commit messages (<https://www.conventionalcommits.org/en/v1.0.0/>).
Bindings to FFmpeg <http://www.ffmpeg.org/> AV library for working with audio and video in R. Generates high quality video from images or R graphics with custom audio. Also offers high performance tools for reading raw audio, creating spectrograms', and converting between countless audio / video formats. This package interfaces directly to the C API and does not require any command line utilities.
Calculates some antecedent discharge conditions useful in water quality modeling. Includes methods for calculating flow anomalies, base flow, and smooth discounted flows from daily flow measurements. Antecedent discharge algorithms are described and reviewed in Zhang and Ball (2017) <doi:10.1016/j.jhydrol.2016.12.052>.
Easily estimate the introduction rates of alien species given first records data. It specializes in addressing the role of sampling on the pattern of discoveries, thus providing better estimates than using Generalized Linear Models which assume perfect immediate detection of newly introduced species.
Randomly splits data into testing and training sets. Then, uses stepwise selection to fit numerous multiple regression models on the training data, and tests them on the test data. Returned for each model are plots comparing model Akaike Information Criterion (AIC), Pearson correlation coefficient (r) between the predicted and actual values, Mean Absolute Error (MAE), and R-Squared among the models. Each model is ranked relative to the other models by the model evaluation metrics (i.e., AIC, r, MAE, and R-Squared) and the model with the best mean ranking among the model evaluation metrics is returned. Model evaluation metric weights for AIC, r, MAE, and R-Squared are taken in as arguments as aic_wt, r_wt, mae_wt, and r_squ_wt, respectively. They are equally weighted as default but may be adjusted relative to each other if the user prefers one or more metrics to the others, Field, A. (2013, ISBN:978-1-4462-4918-5).
Computation of the alpha-shape and alpha-convex hull of a given sample of points in the plane. The concepts of alpha-shape and alpha-convex hull generalize the definition of the convex hull of a finite set of points. The programming is based on the duality between the Voronoi diagram and Delaunay triangulation. The package also includes a function that returns the Delaunay mesh of a given sample of points and its dual Voronoi diagram in one single object.
We propose an age-dependent topic modelling (ATM) model, providing a low-rank representation of longitudinal records of hundreds of distinct diseases in large electronic health record data sets. The model assigns to each individual topic weights for several disease topics; each disease topic reflects a set of diseases that tend to co-occur as a function of age, quantified by age-dependent topic loadings for each disease. The model assumes that for each disease diagnosis, a topic is sampled based on the individualâ s topic weights (which sum to 1 across topics, for a given individual), and a disease is sampled based on the individualâ s age and the age-dependent topic loadings (which sum to 1 across diseases, for a given topic at a given age). The model generalises the Latent Dirichlet Allocation (LDA) model by allowing topic loadings for each topic to vary with age. References: Jiang (2023) <doi:10.1038/s41588-023-01522-8>.
Spatial modeling of energy balance and actual evapotranspiration using satellite images and meteorological data. Options of satellite are: Landsat-8 (with and without thermal bands), Sentinel-2 and MODIS. Respectively spatial resolutions are 30, 100, 10 and 250 meters. User can use data from a single meteorological station or a grid of meteorological stations (using any spatial interpolation method). Silva, Teixeira, and Manzione (2019) <doi:10.1016/j.envsoft.2019.104497>.
This package creates pre- and post- intervention scattergrams based on audiometric data. These scattergrams are formatted for publication in Otology & Neurotology and other otolaryngology journals. For more details, see Gurgel et al (2012) <doi:10.1177/0194599812458401>, Oghalai and Jackler (2016) <doi:10.1177/0194599816638314>.
Computation of A (pedigree), G (genomic-base), and H (A corrected by G) relationship matrices for diploid and autopolyploid species. Several methods are implemented considering additive and non-additive models.
Epidemiological population dynamics models traditionally define a pathogen's virulence as the increase in the per capita rate of mortality of infected hosts due to infection. This package provides functions allowing virulence to be estimated by maximum likelihood techniques. The approach is based on the analysis of relative survival comparing survival in matching cohorts of infected vs. uninfected hosts (Agnew 2019) <doi:10.1101/530709>.
Some convenient functions to work with arrays.
An interface to Azure Cognitive Services <https://learn.microsoft.com/en-us/azure/cognitive-services/>. Both an Azure Resource Manager interface, for deploying Cognitive Services resources, and a client framework are supplied. While AzureCognitive can be called by the end-user, it is meant to provide a foundation for other packages that will support specific services, like Computer Vision, Custom Vision, language translation, and so on. Part of the AzureR family of packages.
Extraction, preparation, visualisation and analysis of TERN AusPlots ecosystem monitoring data. Direct access to plot-based data on vegetation and soils across Australia, including physical sample barcode numbers. Simple function calls extract the data and merge them into species occurrence matrices for downstream analysis, or calculate things like basal area and fractional cover. TERN AusPlots is a national field plot-based ecosystem surveillance monitoring method and dataset for Australia. The data have been collected across a national network of plots and transects by the Terrestrial Ecosystem Research Network (TERN - <https://www.tern.org.au>), an Australian Government NCRIS-enabled project, and its Ecosystem Surveillance platform (<https://www.tern.org.au/tern-land-observatory/ecosystem-surveillance-and-environmental-monitoring/>).
Collect your data on digital marketing campaigns from Adform Ads using the Windsor.ai API <https://windsor.ai/api-fields/>.
This package contains tools to fit the additive hazards model to data from a cohort, random sampling, two-phase Bernoulli sampling and two-phase finite population sampling, as well as calibration tool to incorporate phase I auxiliary information into the two-phase data model fitting. This package provides regression parameter estimates and their model-based and robust standard errors. It also offers tools to make prediction of individual specific hazards.
Download Alphavantage financial data <https://www.alphavantage.co/documentation/> to reduced data.table objects. Includes support functions to extract and simplify complex data returned from API calls.
Actuarial reports are prepared for the last day of a specific period, such as a month, a quarter or a year. Actuarial models assume that certain events happen at the beginning or end of periods. The package contains functions to easily refer to the first or last (working) day within a specific period relative to a base date to facilitate actuarial reporting and to compare results.
This package provides an htmlwidgets interface to apexcharts.js'. Apexcharts is a modern JavaScript charting library to build interactive charts and visualizations with simple API. Apexcharts examples and documentation are available here: <https://apexcharts.com/>.
We aim to deal with data with measurement error in the response and misclassification censoring status under an AFT model. This package primarily contains three functions, which are used to generate artificial data, correction for error-prone data and estimate the functional covariates for an AFT model.
An interactive document on the topic of one-way and two-way analysis of variance using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://tinyurl.com/ANOVAStatsTool>.
This package provides a collection of measures for measuring ecological diversity. Ecological diversity comes in two flavors: alpha diversity measures the diversity within a single site or sample, and beta diversity measures the diversity across two sites or samples. This package overlaps considerably with other R packages such as vegan', gUniFrac', betapart', and fossil'. We also include a wide range of functions that are implemented in software outside the R ecosystem, such as scipy', Mothur', and scikit-bio'. The implementations here are designed to be basic and clear to the reader.
Model that assesses daily exposure to air pollution, which considers daily population mobility on a geographical scale and the spatial and temporal variability of pollutant concentrations, in addition to traditional parameters such as exposure time and pollutant concentration.