Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Generate spreadsheet publications that follow best practice guidance from the UK government's Analysis Function, available at <https://analysisfunction.civilservice.gov.uk/policy-store/releasing-statistics-in-spreadsheets/>, with a focus on accessibility. See also the Python package gptables'.
Extract and process bird sightings records from eBird (<http://ebird.org>), an online tool for recording bird observations. Public access to the full eBird database is via the eBird Basic Dataset (EBD; see <http://ebird.org/ebird/data/download> for access), a downloadable text file. This package is an interface to AWK for extracting data from the EBD based on taxonomic, spatial, or temporal filters, to produce a manageable file size that can be imported into R.
Functionality to allow users to easily colour plots with the colour palettes of various academic institutions.
Considering an (n x m) data matrix X, this package is based on the method proposed by Gower, Groener, and Velden (2010) <doi:10.1198/jcgs.2010.07134>, and utilize the resulting matrices from the extended version of the NIPALS decomposition to determine n triangles whose areas are used to visually estimate the elements of a specific column of X. After a 90-degree rotation of the sample points, the triangles are drawn regarding the following points: 1.the origin of the axes; 2.the sample points; 3. the vector endpoint representing some variable.
This package provides methods for analyzing DNA copy-number data. Specifically, this package implements the multi-source copy-number normalization (MSCN) method for normalizing copy-number data obtained on various platforms and technologies. It also implements the TumorBoost method for normalizing paired tumor-normal SNP data.
Manage storage in Microsoft's Azure cloud: <https://azure.microsoft.com/en-us/products/category/storage/>. On the admin side, AzureStor includes features to create, modify and delete storage accounts. On the client side, it includes an interface to blob storage, file storage, and Azure Data Lake Storage Gen2': upload and download files and blobs; list containers and files/blobs; create containers; and so on. Authenticated access to storage is supported, via either a shared access key or a shared access signature (SAS). Part of the AzureR family of packages.
This package provides a common task faced by researchers is the creation of APA style (i.e., American Psychological Association style) tables from statistical output. In R a large number of function calls are often needed to obtain all of the desired information for a single APA style table. As well, the process of manually creating APA style tables in a word processor is prone to transcription errors. This package creates Word files (.doc files) containing APA style tables for several types of analyses. Using this package minimizes transcription errors and reduces the number commands needed by the user.
Tool is created for regression, prediction and forecast analysis of macroeconomic and credit data. The package includes functions from existing R packages adapted for banking sector of Kazakhstan. The purpose of the package is to optimize statistical functions for easier interpretation for bank analysts and non-statisticians.
For a binary classification the adjusted sensitivity and specificity are measured for a given fixed threshold. If the threshold for either sensitivity or specificity is not given, the crossing point between the sensitivity and specificity curves are returned. For bootstrap procedures, mean and CI bootstrap values of sensitivity, specificity, crossing point between specificity and specificity as well as AUC and AUCPR can be evaluated.
An iterative process that optimizes a function by alternately performing restricted optimization over parameter subsets. Instead of joint optimization, it breaks the optimization problem down into simpler sub-problems. This approach can make optimization feasible when joint optimization is too difficult.
Extends package arules with various visualization techniques for association rules and itemsets. The package also includes several interactive visualizations for rule exploration. Michael Hahsler (2017) <doi:10.32614/RJ-2017-047>.
These dataset contains daily quality air measurements in Spain over a period of 18 years (from 2001 to 2018). The measurements refer to several pollutants. These data are openly published by the Government of Spain. The datasets were originally spread over a number of files and formats. Here, the same information is contained in simple dataframe for convenience of researches, journalists or general public. See the Spanish Government website <http://www.miteco.gob.es/> for more information.
Get information about air quality using Airly <https://airly.eu/> API through R.
Static code compilation of a shiny app given an R function (into ui.R and server.R files or into a shiny app object). See examples at <https://github.com/alekrutkowski/autoshiny>.
Utilities to parse authors fields from DESCRIPTION files and general purpose functions to deduplicate names in database, beyond the specific case of R package authors.
Designed for studies where animals tagged with acoustic tags are expected to move through receiver arrays. This package combines the advantages of automatic sorting and checking of animal movements with the possibility for user intervention on tags that deviate from expected behaviour. The three analysis functions (explore(), migration() and residency()) allow the users to analyse their data in a systematic way, making it easy to compare results from different studies. CJS calculations are based on Perry et al. (2012) <https://www.researchgate.net/publication/256443823_Using_mark-recapture_models_to_estimate_survival_from_telemetry_data>.
This package implements discrete time deterministic and stochastic age-structured population dynamics models described in Erguler and others (2016) <doi:10.1371/journal.pone.0149282> and Erguler and others (2017) <doi:10.1371/journal.pone.0174293>.
Computes low-dimensional point representations of high-dimensional numerical data according to the data visualization method Adaptable Radial Axes described in: Manuel Rubio-Sánchez, Alberto Sanchez, and Dirk J. Lehmann (2017) "Adaptable radial axes plots for improved multivariate data visualization" <doi:10.1111/cgf.13196>.
This package performs statistical testing to compare predictive models based on multiple observations of the A statistic (also known as Area Under the Receiver Operating Characteristic Curve, or AUC). Specifically, it implements a testing method based on the equivalence between the A statistic and the Wilcoxon statistic. For more information, see Hanley and McNeil (1982) <doi:10.1148/radiology.143.1.7063747>.
Process results generated by Antares', a powerful open source software developed by RTE (Réseau de Transport dâ à lectricité) to simulate and study electric power systems (more information about Antares here: <https://github.com/AntaresSimulatorTeam/Antares_Simulator>). This package provides functions to create new columns like net load, load factors, upward and downward margins or to compute aggregated statistics like economic surpluses of consumers, producers and sectors.
Using this package, you can fit a random effects model using either the hierarchical credibility model, a combination of the hierarchical credibility model with a generalized linear model or a Tweedie generalized linear mixed model. See Campo, B.D.C. and Antonio, K. (2023) <doi:10.1080/03461238.2022.2161413>.
Providing ways to estimate the value of European stock options given historical stock price data. It includes functions for calculating option values based on autoregressiveâ moving-average (ARMA) models and generates information about these models. This package is made to be easy to understand and for financial analysis capabilities.
Alternating Manifold Proximal Gradient Method for Sparse PCA uses the Alternating Manifold Proximal Gradient (AManPG) method to find sparse principal components from a data or covariance matrix. Provides a novel algorithm for solving the sparse principal component analysis problem which provides advantages over existing methods in terms of efficiency and convergence guarantees. Chen, S., Ma, S., Xue, L., & Zou, H. (2020) <doi:10.1287/ijoo.2019.0032>. Zou, H., Hastie, T., & Tibshirani, R. (2006) <doi:10.1198/106186006X113430>. Zou, H., & Xue, L. (2018) <doi:10.1109/JPROC.2018.2846588>.
This package provides tools to read/write/publish metadata based on the Atom XML syndication format. This includes support of Dublin Core XML implementation, and a client to API(s) implementing the AtomPub - SWORD API specification.