Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Using Australian Bureau of Statistics indices, provides functions that convert historical, nominal statistics to real, contemporary values without worrying about date input quality, performance, or the ABS catalogue.
Efficiently implements the Graphical Lasso algorithm, utilizing the Armadillo C++ library for rapid computation. This algorithm introduces an L1 penalty to derive sparse inverse covariance matrices from observations of multivariate normal distributions. Features include the generation of random and structured sparse covariance matrices, beneficial for simulations, statistical method testing, and educational purposes in graphical modeling. A unique function for regularization parameter selection based on predefined sparsity levels is also offered, catering to users with specific sparsity requirements in their models. The methodology for sparse inverse covariance estimation implemented in this package is based on the work of Friedman, Hastie, and Tibshirani (2008) <doi:10.1093/biostatistics/kxm045>.
Supports the assessment of functional enrichment analyses obtained for several lists of genes and provides a workflow to analyze them between two species via weighted graphs. Methods are described in Sosa et al. (2023) <doi:10.1016/j.ygeno.2022.110528>.
Maximum likelihood estimation under relational models, with or without the overall effect.
This package provides a word cloud text geom for ggplot2'. Texts are placed so that they do not overlap as in ggrepel'. The algorithm used is a variation around the one of wordcloud2.js'.
Read examples with interlinear glosses from files or from text and print them in a way compatible with both Latex and HTML outputs.
This General Regression Neural Networks Package uses various distance functions. It was motivated by Specht (1991, ISBN:1045-9227), and updated from previous published paper Li et al. (2016) <doi:10.1016/j.palaeo.2015.11.005>. This package includes various functions, although "euclidean" distance is used traditionally.
This package provides a compilation of tools to complete common tasks for studying gerrymandering. This focuses on the geographic tool side of common problems, such as linking different levels of spatial units or estimating how to break up units. Functions exist for creating redistricting-focused data for the US.
Visualizes two-dimensional geoelectric resistivity measurement profiles in three dimensions.
This package provides functions to calculate the best linear unbiased prediction of genotype-by-environment metrics: ecovalence, environmental variance, Finlay and Wilkinson regression and Lin and Binns superiority measure, based on a multi-environment genomic prediction model.
This package provides tools.
Collection of functions to enhance ggplot2 and ggiraph'. Provides functions for exploratory plots. All plot can be a static plot or an interactive plot using ggiraph'.
Projections are common dimensionality reduction methods, which represent high-dimensional data in a two-dimensional space. However, when restricting the output space to two dimensions, which results in a two dimensional scatter plot (projection) of the data, low dimensional similarities do not represent high dimensional distances coercively [Thrun, 2018] <DOI: 10.1007/978-3-658-20540-9>. This could lead to a misleading interpretation of the underlying structures [Thrun, 2018]. By means of the 3D topographic map the generalized Umatrix is able to depict errors of these two-dimensional scatter plots. The package is derived from the book of Thrun, M.C.: "Projection Based Clustering through Self-Organization and Swarm Intelligence" (2018) <DOI:10.1007/978-3-658-20540-9> and the main algorithm called simplified self-organizing map for dimensionality reduction methods is published in <DOI: 10.1016/j.mex.2020.101093>.
Detecting spatial associations via spatial stratified heterogeneity, accounting for spatial dependencies, interpretability, complex interactions, and robust stratification. In addition, it supports the spatial stratified heterogeneity family described in Lv et al. (2025)<doi:10.1111/tgis.70032>.
Saves a ggplot object into multiple files, each with a layer added incrementally. Generally to be used in presentation slides. Flexible enough to allow different file types for the final complete plot, and intermediate builds.
Facilitates efficient visualization of Relative Synonymous Codon Usage patterns across species. Based on analytical outputs from codonW', MEGA', and Phylosuite', it supports multi-species RSCU comparisons and allows users to explore visual analysis of structurally similar datasets.
An R package that allows for combining tree-boosting with Gaussian process and mixed effects models. It also allows for independently doing tree-boosting as well as inference and prediction for Gaussian process and mixed effects models. See <https://github.com/fabsig/GPBoost> for more information on the software and Sigrist (2022, JMLR) <https://www.jmlr.org/papers/v23/20-322.html> and Sigrist (2023, TPAMI) <doi:10.1109/TPAMI.2022.3168152> for more information on the methodology.
This package provides convenient wrapper functions around the glue library for common string interpolation tasks. The package simplifies the process of combining glue string templating with common R functions like message(), warning(), stop(), print(), cat(), and file writing operations. Instead of manually calling glue() and then passing the result to these functions, glueDo provides direct wrapper functions that handle both steps in a single call. This is particularly useful for logging, error handling, and formatted output in R scripts and packages. The main reference for the underlying glue package is Hester and Bryan (2022) <https://CRAN.R-project.org/package=glue>.
This package provides tools for specifying and evaluating standard and truncated probability distributions, with support for log-space computation and joint distribution specification. It enables Bayesian computation for cognition models and includes utilities for density calculation, sampling, and visualisation, facilitating prior distribution specification and model assessment in hierarchical Bayesian frameworks.
This package provides ggplot2 equivalents of fixest::coefplot() and fixest::iplot(), for producing nice coefficient plots and interaction plots. Enables some additional functionality and convenience features, including grouped multi-'fixest object faceting and programmatic updates to existing plots (e.g., themes and aesthetics).
Easily explore data by plotting graphs with a few lines of code. Use these ggplot() wrappers to quickly draw graphs of scatter/dots with box-whiskers, violins or SD error bars, data distributions, before-after graphs, factorial ANOVA and more. Customise graphs in many ways, for example, by choosing from colour blind-friendly palettes (12 discreet, 3 continuous and 2 divergent palettes). Use the simple code for ANOVA as ordinary (lm()) or mixed-effects linear models (lmer()), including randomised-block or repeated-measures designs, and fit non-linear outcomes as a generalised additive model (gam) using mgcv(). Obtain estimated marginal means and perform post-hoc comparisons on fitted models (via emmeans()). Also includes small datasets for practising code and teaching basics before users move on to more complex designs. See vignettes for details on usage <https://grafify.shenoylab.com/>. Citation: <doi:10.5281/zenodo.5136508>.
This package provides a suite of tools for specifying and examining experimental designs related to choice response time models (e.g., the Diffusion Decision Model). This package allows users to define how experimental factors influence one or more model parameters using R-style formula syntax, while also checking the logical consistency of these associations. Additionally, it integrates with the ggdmc package, which employs Differential Evolution Markov Chain Monte Carlo (DE-MCMC) sampling to optimise model parameters. For further details on the model-building approach, see Heathcote, Lin, Reynolds, Strickland, Gretton, and Matzke (2019) <doi:10.3758/s13428-018-1067-y>.
Identify and visualize individuals with unusual association patterns of genetics and geography using the approach of Chang and Schmid (2023) <doi:10.1101/2023.04.06.535838>. It detects potential outliers that violate the isolation-by-distance assumption using the K-nearest neighbor approach. You can obtain a table of outliers with statistics and visualize unusual geo-genetic patterns on a geographical map. This is useful for landscape genomics studies to discover individuals with unusual geography and genetics associations from a large biological sample.
We propose two distribution-free test statistics based on between-sample edge counts and measure the degree of relevance by standardized counts. Users can set edge costs in the graph to compare the parameters of the distributions. Methods for comparing distributions are as described in: Xiaoping Shi (2021) <arXiv:2107.00728>.