Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for fitting and doing predictions with Gaussian process models using Vecchia's (1988) approximation. Package also includes functions for reordering input locations, finding ordered nearest neighbors (with help from FNN package), grouping operations, and conditional simulations. Covariance functions for spatial and spatial-temporal data on Euclidean domains and spheres are provided. The original approximation is due to Vecchia (1988) <http://www.jstor.org/stable/2345768>, and the reordering and grouping methods are from Guinness (2018) <doi:10.1080/00401706.2018.1437476>. Model fitting employs a Fisher scoring algorithm described in Guinness (2019) <doi:10.48550/arXiv.1905.08374>.
Turn irregular polygons (such as geographical regions) into regular or hexagonal grids. This package enables the generation of regular (square) and hexagonal grids through the package sp and then assigns the content of the existing polygons to the new grid using the Hungarian algorithm, Kuhn (1955) (<doi:10.1007/978-3-540-68279-0_2>). This prevents the need for manual generation of hexagonal grids or regular grids that are supposed to reflect existing geography.
Allows the user to animate text within rmarkdown documents and shiny applications. The animations are activated using the Animate.css library. See <https://animate.style/> for more information.
Find the permutation symmetry group such that the covariance matrix of the given data is approximately invariant under it. Discovering such a permutation decreases the number of observations needed to fit a Gaussian model, which is of great use when it is smaller than the number of variables. Even if that is not the case, the covariance matrix found with gips approximates the actual covariance with less statistical error. The methods implemented in this package are described in Graczyk et al. (2022) <doi:10.1214/22-AOS2174>. Documentation about gips is provided via its website at <https://przechoj.github.io/gips/> and the paper by Chojecki, Morgen, KoÅ odziejek (2025, <doi:10.18637/jss.v112.i07>).
This package provides a general, flexible framework for estimating parameters and empirical sandwich variance estimator from a set of unbiased estimating equations (i.e., M-estimation in the vein of Stefanski & Boos (2002) <doi:10.1198/000313002753631330>). All examples from Stefanski & Boos (2002) are published in the corresponding Journal of Statistical Software paper "The Calculus of M-Estimation in R with geex" by Saul & Hudgens (2020) <doi:10.18637/jss.v092.i02>. Also provides an API to compute finite-sample variance corrections.
This package provides functions to specify and fit generalized nonlinear models, including models with multiplicative interaction terms such as the UNIDIFF model from sociology and the AMMI model from crop science, and many others. Over-parameterized representations of models are used throughout; functions are provided for inference on estimable parameter combinations, as well as standard methods for diagnostics etc.
Convert general transit feed specification (GTFS) data to global positioning system (GPS) records in data.table format. It also has some functions to subset GTFS data in time and space and to convert both representations to simple feature format.
This package performs genetic algorithm (Scrucca, L (2013) <doi:10.18637/jss.v053.i04>) assisted genomic best liner unbiased prediction for genomic selection. It also provides a binning method in natural population for genomic selection under the principle of linkage disequilibrium for dimensional reduction.
Write SARIMA models in (finite) AR representation and simulate generalized multiplicative seasonal autoregressive moving average (time) series with Normal / Gaussian, Poisson or negative binomial distribution. The methodology of this method is described in Briet OJT, Amerasinghe PH, and Vounatsou P (2013) <doi:10.1371/journal.pone.0065761>.
Implementing generalized structured component analysis (GSCA) and its basic extensions, including constrained single and multiple group analysis, and second order latent variable modeling. For a comprehensive overview of GSCA, see Hwang & Takane (2014, ISBN: 9780367738754).
Wrappers for functions in the gRain package to emulate some RHugin functionality, allowing the building of Bayesian networks consisting on discrete chance nodes incrementally, through adding nodes, edges and conditional probability tables, the setting of evidence, both hard (boolean) or soft (likelihoods), querying marginal probabilities and normalizing constants, and generating sets of high-probability configurations. Computations will typically not be so fast as they are with RHugin', but this package should assist users without access to Hugin to use code written to use RHugin'.
An implementation of the International Bureau of Weights and Measures (BIPM) generalized consensus estimators used to assign the reference value in a key comparison exercise. This can also be applied to any interlaboratory study. Given a set of different sources, primary laboratories or measurement methods this package provides an evaluation of the variance components according to the selected statistical method for consensus building. It also implements the comparison among different consensus builders and evaluates the participating method or sources against the consensus reference value. Based on a diverse set of references, DerSimonian-Laird (1986) <doi:10.1016/0197-2456(86)90046-2>, for a complete list of references look at the reference section in the package documentation.
Some methods for the inference and clustering of univariate and multivariate functional data, using a generalization of Mahalanobis distance, along with some functions useful for the analysis of functional data. For further details, see Martino A., Ghiglietti, A., Ieva, F. and Paganoni A. M. (2017) <arXiv:1708.00386>.
This package contains the Global Charcoal database data. Data include charcoal series (age, depth, charcoal quantity, associated units and methods) and information on sedimentary sites (localisation, depositional environment, biome, etc.) as well as publications informations. Since 4.0.0 the GCD mirrors the online SQL database at <http://paleofire.org>.
Helper to add insets based on geom_sf() from ggplot2'. This package gives you a drop-in replacement for geom_sf() that supports adding a zoomed inset map without having to create and embed a separate plot.
This package provides tools for working with polygons with holes in ggplot2', with a new geom for drawing a polypath applying the evenodd or winding rules.
GWAS R API Data Download. This package provides easy access to the NHGRI'-'EBI GWAS Catalog data by accessing the REST API <https://www.ebi.ac.uk/gwas/rest/docs/api/>.
Computes the probability density function (pdf), cumulative distribution function (cdf), quantile function (qf) and generates random values (rg) for the following general models : mixture models, composite models, folded models, skewed symmetric models and arc tan models.
This package provides methods for model selection, estimation, inference, and simulation for the multilevel factor model, based on the principal component estimation and generalised canonical correlation approach. Details can be found in "Generalised Canonical Correlation Estimation of the Multilevel Factor Model." Lin and Shin (2025) <doi:10.2139/ssrn.4295429>.
Focused on extracting important data from track points such as speed, distance, elevation difference and azimuth.(PLAZA, J. et al., 2022) <doi:10.1016/j.applanim.2022.105643>.
Make R scripts reproducible, by ensuring that every time a given script is run, the same version of the used packages are loaded (instead of whichever version the user running the script happens to have installed). This is achieved by using the command groundhog.library() instead of the base command library(), and including a date in the call. The date is used to call on the same version of the package every time (the most recent version available at that date). Load packages from CRAN, GitHub, or Gitlab.
Likelihood inference in Gaussian copula marginal regression models.
This package provides functions for graph matching via nodes degree profiles are provided in this package. The models we can handle include Erdos-Renyi random graphs and stochastic block models(SBM). More details are in the reference paper: Yaofang Hu, Wanjie Wang and Yi Yu (2020) <arXiv:2006.03284>.
Implementations of the algorithms present article Generalized Spatial-Time Sequence Miner, original title (Castro, Antonio; Borges, Heraldo ; Pacitti, Esther ; Porto, Fabio ; Coutinho, Rafaelli ; Ogasawara, Eduardo . Generalização de Mineração de Sequências Restritas no Espaço e no Tempo. In: XXXVI SBBD - Simpósio Brasileiro de Banco de Dados, 2021 <doi:10.5753/sbbd.2021.17891>).