Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementations of the algorithms present article Generalized Spatial-Time Sequence Miner, original title (Castro, Antonio; Borges, Heraldo ; Pacitti, Esther ; Porto, Fabio ; Coutinho, Rafaelli ; Ogasawara, Eduardo . Generalização de Mineração de Sequências Restritas no Espaço e no Tempo. In: XXXVI SBBD - Simpósio Brasileiro de Banco de Dados, 2021 <doi:10.5753/sbbd.2021.17891>).
This package provides a set of geometries to make line plots a little bit nicer. Use along with ggplot2 to: - Improve the clarity of line plots with many overlapping lines - Draw more realistic worms.
Mapping and spatial data manipulation tools - in particular drawing thematic maps with nice looking legends, and aggregation of point data to polygons.
Quantitative trait loci mapping and genome wide association analysis are used to find candidate molecular marker or region associated with phenotype based on linkage analysis and linkage disequilibrium. Gene expression quantitative trait loci mapping is used to find candidate molecular marker or region associated with gene expression. In this package, we applied the method in Liu W. (2011) <doi:10.1007/s00122-011-1631-7> and Gusev A. (2016) <doi:10.1038/ng.3506> to genome and transcriptome wide association study, which is aimed at revealing the association relationship between phenotype and molecular markers, expression levels, molecular markers nested within different related expression effect and expression effect nested within different related molecular marker effect. F test based on full and reduced model are performed to obtain p value or likelihood ratio statistic. The best linear model can be obtained by stepwise regression analysis.
This package provides a simple API for downloading and reading xml data directly from Lattes <http://lattes.cnpq.br/>.
This package provides functions to fit geostatistical data. The data can be continuous, binary or count data and the models implemented are flexible. Conjugate priors are assumed on some parameters while inference on the other parameters can be done through a full Bayesian analysis of by empirical Bayes methods.
This package provides a collection of custom ggplot2'-based visualizations for data exploration and analysis. Each function handles data preprocessing and returns a object that can be further customized using standard ggplot2 syntax.
Analyze the default risk of credit portfolios. Commonly known models, like CreditRisk+ or the CreditMetrics model are implemented in their very basic settings. The portfolio loss distribution can be achieved either by simulation or analytically in case of the classic CreditRisk+ model. Models are only implemented to respect losses caused by defaults, i.e. migration risk is not included. The package structure is kept flexible especially with respect to distributional assumptions in order to quantify the sensitivity of risk figures with respect to several assumptions. Therefore the package can be used to determine the credit risk of a given portfolio as well as to quantify model sensitivities.
This package provides tools for assessing and diagnosing convergence of Markov Chain Monte Carlo simulations, as well as for graphically display results from full MCMC analysis. The package also facilitates the graphical interpretation of models by providing flexible functions to plot the results against observed variables, and functions to work with hierarchical/multilevel batches of parameters (Fernández-i-Marà n, 2016 <doi:10.18637/jss.v070.i09>).
Fits a generalized linear density ratio model (GLDRM). A GLDRM is a semiparametric generalized linear model. In contrast to a GLM, which assumes a particular exponential family distribution, the GLDRM uses a semiparametric likelihood to estimate the reference distribution. The reference distribution may be any discrete, continuous, or mixed exponential family distribution. The model parameters, which include both the regression coefficients and the cdf of the unspecified reference distribution, are estimated by maximizing a semiparametric likelihood. Regression coefficients are estimated with no loss of efficiency, i.e. the asymptotic variance is the same as if the true exponential family distribution were known. Huang (2014) <doi:10.1080/01621459.2013.824892>. Huang and Rathouz (2012) <doi:10.1093/biomet/asr075>. Rathouz and Gao (2008) <doi:10.1093/biostatistics/kxn030>.
Estimation of the effect of each income source on income inequalities based on the decomposition of Lerman and Yitzhaki (1985) <doi:10.2307/1928447>.
Read, manipulate, and digitize landmark data, generate shape variables via Procrustes analysis for points, curves and surfaces, perform shape analyses, and provide graphical depictions of shapes and patterns of shape variation.
This package provides a coherent interface and implementation for creating grouped date classes.
Two arms clinical trials required sample size is calculated in the comprehensive parametric context. The calculation is based on the type of endpoints(continuous/binary/time-to-event/ordinal), design (parallel/crossover), hypothesis tests (equality/noninferiority/superiority/equivalence), trial arms noncompliance rates and expected loss of follow-up. Methods are described in: Chow SC, Shao J, Wang H, Lokhnygina Y (2017) <doi:10.1201/9781315183084>, Wittes, J (2002) <doi:10.1093/epirev/24.1.39>, Sato, T (2000) <doi:10.1002/1097-0258(20001015)19:19%3C2689::aid-sim555%3E3.0.co;2-0>, Lachin J M, Foulkes, M A (1986) <doi:10.2307/2531201>, Whitehead J(1993) <doi:10.1002/sim.4780122404>, Julious SA (2023) <doi:10.1201/9780429503658>.
An intuitive interface to simulate (1) superimposed (marked) point patterns with vectorized parameterization of random point pattern and distribution of marks; and (2) grouped hyper data frame based on population parameters and subject-specific random effects.
The first major functionality is to compute the bias in regression coefficients of misspecified linear gene-environment interaction models. The most generalized function for this objective is GE_bias(). However GE_bias() requires specification of many higher order moments of covariates in the model. If users are unsure about how to calculate/estimate these higher order moments, it may be easier to use GE_bias_normal_squaredmis(). This function places many more assumptions on the covariates (most notably that they are all jointly generated from a multivariate normal distribution) and is thus able to automatically calculate many of the higher order moments automatically, necessitating only that the user specify some covariances. There are also functions to solve for the bias through simulation and non-linear equation solvers; these can be used to check your work. Second major functionality is to implement the Bootstrap Inference with Correct Sandwich (BICS) testing procedure, which we have found to provide better finite-sample performance than other inference procedures for testing GxE interaction. More details on these functions are available in Sun, Carroll, Christiani, and Lin (2018) <doi:10.1111/biom.12813>.
This package provides a collection of functions to set up Google Public Data Explorer <https://www.google.com/publicdata/> data visualization tool with your own data, building automatically the corresponding DataSet Publishing Language file, or DSPL (XML), metadata file jointly with the CSV files. All zip-up and ready to be published in Public Data Explorer'.
This package provides a function that generates a customized correlation matrix based on limit values and proportions for intervals composed by its limits. It can also generate random matrices with low, medium, and high correlations, in which low, medium, and high thresholds are user-defined.
The GeneCycle package implements the approaches of Wichert et al. (2004) <doi:10.1093/bioinformatics/btg364>, Ahdesmaki et al. (2005) <doi:10.1186/1471-2105-6-117> and Ahdesmaki et al. (2007) <DOI:10.1186/1471-2105-8-233> for detecting periodically expressed genes from gene expression time series data.
Implemented are three Wald-type statistic and respective permuted versions for null hypotheses formulated in terms of cumulative hazard rate functions, medians and the concordance measure, respectively, in the general framework of survival factorial designs with possibly heterogeneous survival and/or censoring distributions, for crossed designs with an arbitrary number of factors and nested designs with up to three factors. Ditzhaus, Dobler and Pauly (2020) <doi:10.1177/0962280220980784> Ditzhaus, Janssen, Pauly (2020) <arXiv: 2004.10818v2> Dobler and Pauly (2019) <doi:10.1177/0962280219831316>.
The Grouphmap was implemented in R, an open-source programming environment, and was released under the provided website. The difference analysis is based on the limma package, which can cover gene and protein expression profiles (Reference: Matthew E Ritchie , Belinda Phipson , Di Wu , Yifang Hu , Charity W Law , Wei Shi , Gordon K Smyth (2015) <doi:10.1093/nar/gkv007>). The GO enrichment analysis is based on the clusterProfiler package and supports three common species: human, mouse, and yeast (Reference: Guangchuang Yu, Li-Gen Wang, Yanyan Han, Qing-Yu He (2012) <doi:10.1089/omi.2011.0118>). The results of batch difference analysis and enrichment analysis are output in separate folders for easy viewing and further visualization of the results during the process. The results returned a heatmap in R and exported to 3 folders named DEG, go, and merge.
This package provides tools and methods to apply the model Geospatial Regression Equation for European Nutrient losses (GREEN); Grizzetti et al. (2005) <doi:10.1016/j.jhydrol.2004.07.036>; Grizzetti et al. (2008); Grizzetti et al. (2012) <doi:10.1111/j.1365-2486.2011.02576.x>; Grizzetti et al. (2021) <doi:10.1016/j.gloenvcha.2021.102281>.
Generate Manhattan, Q-Q, and PCA plots from GWAS and PCA results using ggplot2'.
In gene-expression microarray studies, for example, one generally obtains a list of dozens or hundreds of genes that differ in expression between samples and then asks What does all of this mean biologically? Alternatively, gene lists can be derived conceptually in addition to experimentally. For instance, one might want to analyze a group of genes known as housekeeping genes. The work of the Gene Ontology (GO) Consortium <geneontology.org> provides a way to address that question. GO organizes genes into hierarchical categories based on biological process, molecular function and subcellular localization. The role of GoMiner is to automate the mapping between a list of genes and GO, and to provide a statistical summary of the results as well as a visualization.