Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Download and process public domain works in the Project Gutenberg collection <https://www.gutenberg.org/>. Includes metadata for all Project Gutenberg works, so that they can be searched and retrieved.
Tests of goodness-of-fit based on a kernel smoothing of the data. References: PavĂ a (2015) <doi:10.18637/jss.v066.c01>.
Automated General-to-Specific (GETS) modelling of the mean and variance of a regression, and indicator saturation methods for detecting and testing for structural breaks in the mean, see Pretis, Reade and Sucarrat (2018) <doi:10.18637/jss.v086.i03> for an overview of the package. In advanced use, the estimator and diagnostics tests can be fully user-specified, see Sucarrat (2021) <doi:10.32614/RJ-2021-024>.
William S. Cleveland's book Visualizing Data is a classic piece of literature on Exploratory Data Analysis. Although it was written several decades ago, its content is still relevant as it proposes several tools which are useful to discover patterns and relationships among the data under study, and also to assess the goodness of fit o a model. This package provides functions to produce the ggplot2 versions of the visualization tools described in this book and is thought to be used in the context of courses on Exploratory Data Analysis.
This package provides a theme, a discrete color palette, and continuous scales to make ggplot2 look like gnuplot'. This may be helpful if you use both ggplot2 and gnuplot in one project.
This package provides functions to develop simulated continuous data (e.g., gene expression) from a sigma covariance matrix derived from a graph structure in igraph objects. Intended to extend mvtnorm to take igraph structures rather than sigma matrices as input. This allows the use of simulated data that correctly accounts for pathway relationships and correlations. This allows the use of simulated data that correctly accounts for pathway relationships and correlations. Here we present a versatile statistical framework to simulate correlated gene expression data from biological pathways, by sampling from a multivariate normal distribution derived from a graph structure. This package allows the simulation of biological pathways from a graph structure based on a statistical model of gene expression. For example methods to infer biological pathways and gene regulatory networks from gene expression data can be tested on simulated datasets using this framework. This also allows for pathway structures to be considered as a confounding variable when simulating gene expression data to test the performance of genomic analyses.
This package provides a simple to use, intuitive, and extensible interface to several stochastic simulation algorithms for generating simulated trajectories of finite population continuous-time model. Currently it implements Gillespie's exact stochastic simulation algorithm (Direct method) and several approximate methods (Explicit tau-leap, Binomial tau-leap, and Optimized tau-leap). The package also contains a library of template models that can be run as demo models and can easily be customized and extended. Currently the following models are included, Decaying-Dimerization reaction set, linear chain system, logistic growth model, Lotka predator-prey model, Rosenzweig-MacArthur predator-prey model, Kermack-McKendrick SIR model, and a metapopulation SIRS model. Pineda-Krch et al. (2008) <doi:10.18637/jss.v025.i12>.
Approaches a group sparse solution of an underdetermined linear system. It implements the proximal gradient algorithm to solve a lower regularization model of group sparse learning. For details, please refer to the paper "Y. Hu, C. Li, K. Meng, J. Qin and X. Yang. Group sparse optimization via l_p,q regularization. Journal of Machine Learning Research, to appear, 2017".
Automated model selection and model-averaging. Provides a wrapper for glm and other functions, automatically generating all possible models (under constraints set by the user) with the specified response and explanatory variables, and finding the best models in terms of some Information Criterion (AIC, AICc or BIC). Can handle very large numbers of candidate models. Features a Genetic Algorithm to find the best models when an exhaustive screening of the candidates is not feasible.
Collection of datasets as prepared by Profs. A.P. Gore, S.A. Paranjape, and M.B. Kulkarni of Department of Statistics, Poona University, India. With their permission, first letter of their names forms the name of this package, the package has been built by me and made available for the benefit of R users. This collection requires a rich class of models and can be a very useful building block for a beginner.
This package provides plotting functions for visualizing pedigrees in behavior genetics and kinship research. The package complements BGmisc [Garrison et al. (2024) <doi:10.21105/joss.06203>] by rendering pedigrees using the ggplot2 framework and offers a modern alternative to the base-graphics pedigree plot in kinship2 [Sinnwell et al. (2014) <doi:10.1159/000363105>]. Features include support for duplicated individuals, complex mating structures, integration with simulated pedigrees, and layout customization.
Likelihood ratio tests for genome-wide association and genome-wide linkage analysis under heterogeneity.
Basic infrastructure and several algorithms for 1d-4d bin packing problem. This package provides a set of c-level classes and solvers for 1d-4d bin packing problem, and an r-level solver for 4d bin packing problem, which is a wrapper over the c-level 4d bin packing problem solver. The 4d bin packing problem solver aims to solve bin packing problem, a.k.a container loading problem, with an additional constraint on weight. Given a set of rectangular-shaped items, and a set of rectangular-shaped bins with weight limit, the solver looks for an orthogonal packing solution such that minimizes the number of bins and maximize volume utilization. Each rectangular-shaped item i = 1, .. , n is characterized by length l_i, depth d_i, height h_i, and weight w_i, and each rectangular-shaped bin j = 1, .. , m is specified similarly by length l_j, depth d_j, height h_j, and weight limit w_j. The item can be rotated into any orthogonal direction, and no further restrictions implied.
This package implements the gene-based segregation test(GESE) and the weighted GESE test for identifying genes with causal variants of large effects for family-based sequencing data. The methods are described in Qiao, D. Lange, C., Laird, N.M., Won, S., Hersh, C.P., et al. (2017). <DOI:10.1002/gepi.22037>. Gene-based segregation method for identifying rare variants for family-based sequencing studies. Genet Epidemiol 41(4):309-319. More details can be found at <http://scholar.harvard.edu/dqiao/gese>.
Gaussian mixture graphical models include Bayesian networks and dynamic Bayesian networks (their temporal extension) whose local probability distributions are described by Gaussian mixture models. They are powerful tools for graphically and quantitatively representing nonlinear dependencies between continuous variables. This package provides a complete framework to create, manipulate, learn the structure and the parameters, and perform inference in these models. Most of the algorithms are described in the PhD thesis of Roos (2018) <https://tel.archives-ouvertes.fr/tel-01943718>.
Calculates and analyzes six measures of geographic range from a set of longitudinal and latitudinal occurrence data. Measures included are minimum convex hull area, minimum spanning tree distance, longitudinal range, latitudinal range, maximum pairwise great circle distance, and number of X by X degree cells occupied.
Create epicurves, epigantt charts, and diverging bar charts using ggplot2'. Prepare data for visualisation or other reporting for infectious disease surveillance and outbreak investigation (time series data). Includes tidy functions to solve date based transformations for common reporting tasks, like (A) seasonal date alignment for respiratory disease surveillance, (B) date-based case binning based on specified time intervals like isoweek, epiweek, month and more, (C) automated detection and marking of the new year based on the date/datetime axis of the ggplot2', (D) labelling of the last value of a time-series. An introduction on how to use epicurves can be found on the US CDC website (2012, <https://www.cdc.gov/training/quicklearns/epimode/index.html>).
This package contains the Gene ontology terms and skeleton for the reduced GO directed acyclic graph (DAG) for the organisms Rat and Mouse. The methods are explicitly discussed in the following article : Manjang et al (2020) <doi:10.1038/s41598-020-73326-3>.
This is a dataset package for GANPA, which implements a network-based gene weighting approach to pathway analysis. This package includes data useful for GANPA, such as a functional association network, pathways, an expression dataset and multi-subunit proteins.
Robust Estimation of Multivariate Location and Scatter in the Presence of Cellwise and Casewise Contamination and Missing Data.
Support for geostatistical analysis of multivariate data, in particular data with restrictions, e.g. positive amounts, compositions, distributional data, microstructural data, etc. It includes descriptive analysis and modelling for such data, both from a two-point Gaussian perspective and multipoint perspective. The methods mainly follow Tolosana-Delgado, Mueller and van den Boogaart (2018) <doi:10.1007/s11004-018-9769-3>.
This package provides a mechanism to plot a Google Map from R and overlay it with shapes and markers. Also provides access to Google Maps APIs, including places, directions, roads, distances, geocoding, elevation and timezone.
Calculates grey level co-occurrence matrix (GLCM) based texture measures (Hall-Beyer (2017) <https://prism.ucalgary.ca/bitstream/handle/1880/51900/texture%20tutorial%20v%203_0%20180206.pdf>; Haralick et al. (1973) <doi:10.1109/TSMC.1973.4309314>) of raster layers using a sliding rectangular window. It also includes functions to quantize a raster into grey levels as well as tabulate a glcm and calculate glcm texture metrics for a matrix.
This package provides a group of sample points are evaluated against a user-defined expression, the sample points are lists of parameters with values that may be substituted into that expression. The genetic algorithm attempts to make the result of the expression as low as possible (usually this would be the sum of residuals squared).