Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Generalized Odds Rate Mixture Cure (GORMC) model is a flexible model of fitting survival data with a cure fraction, including the Proportional Hazards Mixture Cure (PHMC) model and the Proportional Odds Mixture Cure Model as special cases. This package fit the GORMC model with interval censored data.
It analyzes raster maps and other information as input/output files from the Hydrological Distributed Model GEOtop. It contains functions and methods to import maps and other keywords from geotop.inpts file. Some examples with simulation cases of GEOtop 2.x/3.x are presented in the package. Any information about the GEOtop Distributed Hydrological Model can be found in the provided documentation.
Implement a coherent and flexible protocol for animal color tagging. GenTag provides a simple computational routine with low CPU usage to create color sequences for animal tag. First, a single-color tag sequence is created from an algorithm selected by the user, followed by verification of the combination uniqueness. Three methods to produce color tag sequences are provided. Users can modify the main function core to allow a wide range of applications.
Using an approach based on similarity graph to estimate change-point(s) and the corresponding p-values. Can be applied to any type of data (high-dimensional, non-Euclidean, etc.) as long as a reasonable similarity measure is available.
Download and process public domain works in the Project Gutenberg collection <https://www.gutenberg.org/>. Includes metadata for all Project Gutenberg works, so that they can be searched and retrieved.
Promote access to the GESLA <https://gesla787883612.wordpress.com> (Global Extreme Sea Level Analysis) dataset, a higher-frequency sea-level record data from all over the world. It provides functions to download it entirely, or query subsets directly into R, without the need of downloading the full dataset. Also, it provides a built-in web-application, so that users can apply basic filters to select the data of interest, generating informative plots, and showing the selected sites.
This package provides a novel PRS model is introduced to enhance the prediction accuracy by utilising GxE effects. This package performs Genome Wide Association Studies (GWAS) and Genome Wide Environment Interaction Studies (GWEIS) using a discovery dataset. The package has the ability to obtain polygenic risk scores (PRSs) for a target sample. Finally it predicts the risk values of each individual in the target sample. Users have the choice of using existing models (Li et al., 2015) <doi:10.1093/annonc/mdu565>, (Pandis et al., 2013) <doi:10.1093/ejo/cjt054>, (Peyrot et al., 2018) <doi:10.1016/j.biopsych.2017.09.009> and (Song et al., 2022) <doi:10.1038/s41467-022-32407-9>, as well as newly proposed models for genomic risk prediction (refer to the URL for more details).
Density function and generation of random variables from the Generalized Inverse Normal (GIN) distribution from Robert (1991) <doi:10.1016/0167-7152(91)90174-P>. Also provides density functions and generation from the GIN distribution truncated to positive or negative reals. Theoretical guarantees supporting the sampling algorithms and an application to Bayesian estimation of network formation models can be found in the working paper Ding, Estrada and Montoya-Blandón (2023) <https://www.smontoyablandon.com/publication/networks/network_externalities.pdf>.
For plant physiologists, converts conductance (e.g. stomatal conductance) to different units: m/s, mol/m^2/s, and umol/m^2/s/Pa.
This package provides a new take on the bar chart. Similar to a waffle style chart but instead of squares the layout resembles a brick wall.
This package provides functions for graph matching via nodes degree profiles are provided in this package. The models we can handle include Erdos-Renyi random graphs and stochastic block models(SBM). More details are in the reference paper: Yaofang Hu, Wanjie Wang and Yi Yu (2020) <arXiv:2006.03284>.
Represents generalized geometric ellipsoids with the "(U,D)" representation. It allows degenerate and/or unbounded ellipsoids, together with methods for linear and duality transformations, and for plotting. Thus ellipsoids are naturally extended to include lines, hyperplanes, points, cylinders, etc. This permits exploration of a variety to statistical issues that can be visualized using ellipsoids as discussed by Friendly, Fox & Monette (2013), Elliptical Insights: Understanding Statistical Methods Through Elliptical Geometry <doi:10.1214/12-STS402>.
Realize three approaches for Gene-Environment interaction analysis. All of them adopt Sparse Group Minimax Concave Penalty to identify important G variables and G-E interactions, and simultaneously respect the hierarchy between main G and G-E interaction effects. All the three approaches are available for Linear, Logistic, and Poisson regression. Also realize to mine and construct prior information for G variables and G-E interactions.
This package provides tools to assist planning and monitoring of time-to-event trials under complicated censoring assumptions and/or non-proportional hazards. There are three main components: The first is analytic calculation of predicted time-to-event trial properties, providing estimates of expected hazard ratio, event numbers and power under different analysis methods. The second is simulation, allowing stochastic estimation of these same properties. Thirdly, it provides parametric event prediction using blinded trial data, including creation of prediction intervals. Methods are based upon numerical integration and a flexible object-orientated structure for defining event, censoring and recruitment distributions (Curves).
Generalized competing event model based on Cox PH model and Fine-Gray model. This function is designed to develop optimized risk-stratification methods for competing risks data, such as described in: 1. Carmona R, Gulaya S, Murphy JD, Rose BS, Wu J, Noticewala S,McHale MT, Yashar CM, Vaida F, and Mell LK (2014) <DOI:10.1016/j.ijrobp.2014.03.047>. 2. Carmona R, Zakeri K, Green G, Hwang L, Gulaya S, Xu B, Verma R, Williamson CW, Triplett DP, Rose BS, Shen H, Vaida F, Murphy JD, and Mell LK (2016) <DOI:10.1200/JCO.2015.65.0739>. 3. Lunn, Mary, and Don McNeil (1995) <DOI:10.2307/2532940>.
This package provides a ggplot2 extension providing an integrative framework for composable visualization, enabling the creation of complex multi-plot layouts such as insets, circular arrangements, and multi-panel compositions. Built on the grammar of graphics, it offers tools to align, stack, and nest plots, simplifying the construction of richly annotated figures for high-dimensional data contextsâ such as genomics, transcriptomics, and microbiome studiesâ by making it easy to link related plots, overlay clustering results, or highlight shared patterns.
This package provides functions for estimating a generalized partial linear model, a semiparametric variant of the generalized linear model (GLM) which replaces the linear predictor by the sum of a linear and a nonparametric function.
Finds adaptive strategies for sequential symmetric games using a genetic algorithm. Currently, any symmetric two by two matrix is allowed, and strategies can remember the history of an opponent's play from the previous three rounds of moves in iterated interactions between players. The genetic algorithm returns a list of adaptive strategies given payoffs, and the mean fitness of strategies in each generation.
Implement group response-adaptive randomization procedures, which also integrates standard non-group response-adaptive randomization methods as specialized instances. It is also uniquely capable of managing complex scenarios, including those with delayed and missing responses, thereby expanding its utility in real-world applications. This package offers 16 functions for simulating a variety of response adaptive randomization procedures. These functions are essential for guiding the selection of statistical methods in clinical trials, providing a flexible and effective approach to trial design. Some of the detailed methodologies and algorithms used in this package, please refer to the following references: LJ Wei (1979) <doi:10.1214/aos/1176344614> L. J. WEI and S. DURHAM (1978) <doi:10.1080/01621459.1978.10480109> Durham, S. D., FlournoY, N. AND LI, W. (1998) <doi:10.2307/3315771> Ivanova, A., Rosenberger, W. F., Durham, S. D. and Flournoy, N. (2000) <https://www.jstor.org/stable/25053121> Bai Z D, Hu F, Shen L. (2002) <doi:10.1006/jmva.2001.1987> Ivanova, A. (2003) <doi:10.1007/s001840200220> Hu, F., & Zhang, L. X. (2004) <doi:10.1214/aos/1079120137> Hu, F., & Rosenberger, W. F. (2006, ISBN:978-0-471-65396-7). Zhang, L. X., Chan, W. S., Cheung, S. H., & Hu, F. (2007) <https://www.jstor.org/stable/26432528> Zhang, L., & Rosenberger, W. F. (2006) <doi:10.1111/j.1541-0420.2005.00496.x> Hu, F., Zhang, L. X., Cheung, S. H., & Chan, W. S. (2008) <doi:10.1002/cjs.5550360404>.
Data-driven approach for arriving at person-specific time series models. The method first identifies which relations replicate across the majority of individuals to detect signal from noise. These group-level relations are then used as a foundation for starting the search for person-specific (or individual-level) relations. See Gates & Molenaar (2012) <doi:10.1016/j.neuroimage.2012.06.026>.
This package provides tools and methods to apply the model Geospatial Regression Equation for European Nutrient losses (GREEN); Grizzetti et al. (2005) <doi:10.1016/j.jhydrol.2004.07.036>; Grizzetti et al. (2008); Grizzetti et al. (2012) <doi:10.1111/j.1365-2486.2011.02576.x>; Grizzetti et al. (2021) <doi:10.1016/j.gloenvcha.2021.102281>.
This package provides routines to estimate the Mixture Transition Distribution Model based on Raftery (1985) <http://www.jstor.org/stable/2345788> and Nicolau (2014) <doi:10.1111/sjos.12087> specifications, for multivariate data. Additionally, provides a function for the estimation of a new model for multivariate non-homogeneous Markov chains. This new specification, Generalized Multivariate Markov Chains (GMMC) was proposed by Carolina Vasconcelos and Bruno Damasio and considers (continuous or discrete) covariates exogenous to the Markov chain.
This package implements iterative conditional expectation (ICE) estimators of the plug-in g-formula (Wen, Young, Robins, and Hernán (2020) <doi: 10.1111/biom.13321>). Both singly robust and doubly robust ICE estimators based on parametric models are available. The package can be used to estimate survival curves under sustained treatment strategies (interventions) using longitudinal data with time-varying treatments, time-varying confounders, censoring, and competing events. The interventions can be static or dynamic, and deterministic or stochastic (including threshold interventions). Both prespecified and user-defined interventions are available.
Simulation, estimation and testing for geopolitical volatility (GEOVOL) based on the global common volatility model of Engle and Campos-Martins (2023) <doi:10.1016/j.jfineco.2022.09.009>. GEOVOL is modelled as a latent multiplicative volatility factor with heterogeneous factor loadings. Estimation is carried out as a maximization-maximization procedure, where GEOVOL and the GEOVOL loadings are estimated iteratively until convergence.