Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Works with ggplot2 to add a Van Gogh color palette to the userĂ¢ s repertoire. It also has a function that work alongside ggplot2 to create more interesting data visualizations and add contextual information to the userĂ¢ s plots.
Provision of classes and methods for estimating generalized orthogonal GARCH models. This is an alternative approach to CC-GARCH models in the context of multivariate volatility modeling.
The geohabnet package is designed to perform a geographically or spatially explicit risk analysis of habitat connectivity. Xing et al (2021) <doi:10.1093/biosci/biaa067> proposed the concept of cropland connectivity as a risk factor for plant pathogen or pest invasions. As the functions in geohabnet were initially developed thinking on cropland connectivity, users are recommended to first be familiar with the concept by looking at the Xing et al paper. In a nutshell, a habitat connectivity analysis combines information from maps of host density, estimates the relative likelihood of pathogen movement between habitat locations in the area of interest, and applies network analysis to calculate the connectivity of habitat locations. The functions of geohabnet are built to conduct a habitat connectivity analysis relying on geographic parameters (spatial resolution and spatial extent), dispersal parameters (in two commonly used dispersal kernels: inverse power law and negative exponential models), and network parameters (link weight thresholds and network metrics). The functionality and main extensions provided by the functions in geohabnet to habitat connectivity analysis are a) Capability to easily calculate the connectivity of locations in a landscape using a single function, such as sensitivity_analysis() or msean(). b) As backbone datasets, the geohabnet package supports the use of two publicly available global datasets to calculate cropland density. The backbone datasets in the geohabnet package include crop distribution maps from Monfreda, C., N. Ramankutty, and J. A. Foley (2008) <doi:10.1029/2007gb002947> "Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Global Biogeochem. Cycles, 22, GB1022" and International Food Policy Research Institute (2019) <doi:10.7910/DVN/PRFF8V> "Global Spatially-Disaggregated Crop Production Statistics Data for 2010 Version 2.0, Harvard Dataverse, V4". Users can also provide any other geographic dataset that represents host density. c) Because the geohabnet package allows R users to provide maps of host density (as originally in Xing et al (2021)), host landscape density (representing the geographic distribution of either crops or wild species), or habitat distribution (such as host landscape density adjusted by climate suitability) as inputs, we propose the term habitat connectivity. d) The geohabnet package allows R users to customize parameter values in the habitat connectivity analysis, facilitating context-specific (pathogen- or pest-specific) analyses. e) The geohabnet package allows users to automatically visualize maps of the habitat connectivity of locations resulting from a sensitivity analysis across all customized parameter combinations. The primary functions are msean() and sensitivity analysis(). Most functions in geohabnet provide three main outcomes: i) A map of mean habitat connectivity across parameters selected by the user, ii) a map of variance of habitat connectivity across the selected parameters, and iii) a map of the difference between the ranks of habitat connectivity and habitat density. Each function can be used to generate these maps as final outcomes. Each function can also provide intermediate outcomes, such as the adjacency matrices built to perform the analysis, which can be used in other network analysis. Refer to article at <https://garrettlab.github.io/HabitatConnectivity/articles/analysis.html> to see examples of each function and how to access each of these outcome types. To change parameter values, the file called parameters.yaml stores the parameters and their values, can be accessed using get_parameters() and set new parameter values with set_parameters()'. Users can modify up to ten parameters.
This package provides a pipeline with high specificity and sensitivity in extracting proteins from the RefSeq database (National Center for Biotechnology Information). Manual identification of gene families is highly time-consuming and laborious, requiring an iterative process of manual and computational analysis to identify members of a given family. The pipelines implements an automatic approach for the identification of gene families based on the conserved domains that specifically define that family. See Die et al. (2018) <doi:10.1101/436659> for more information and examples.
Guild AI is an open-source tool for managing machine learning experiments. It's for scientists, engineers, and researchers who want to run scripts, compare results, measure progress, and automate machine learning workflow. Guild AI is a light weight, external tool that runs locally. It works with any framework, doesn't require any changes to your code, or access to any web services. Users can easily record experiment metadata, track model changes, manage experiment artifacts, tune hyperparameters, and share results. Guild AI combines features from Git', SQLite', and Make to provide a lab notebook for machine learning.
This package implements statistical methods for group factor analysis, focusing on estimating the number of global and local factors and extracting them. Several algorithms are implemented, including Canonical Correlation-based Estimation by Choi et al. (2021) <doi:10.1016/j.jeconom.2021.09.008>, Generalised Canonical Correlation Estimation by Lin and Shin (2023) <doi:10.2139/ssrn.4295429>, Circularly Projected Estimation by Chen (2022) <doi:10.1080/07350015.2022.2051520>, and the Aggregated Projection Method by Hu et al. (2025) <doi:10.1080/01621459.2025.2491154>.
Convert data to GeoJSON or TopoJSON from various R classes, including vectors, lists, data frames, shape files, and spatial classes. geojsonio does not aim to replace packages like sp', rgdal', rgeos', but rather aims to be a high level client to simplify conversions of data from and to GeoJSON and TopoJSON'.
Generalized factor model is implemented for ultra-high dimensional data with mixed-type variables. Two algorithms, variational EM and alternate maximization, are designed to implement the generalized factor model, respectively. The factor matrix and loading matrix together with the number of factors can be well estimated. This model can be employed in social and behavioral sciences, economy and finance, and genomics, to extract interpretable nonlinear factors. More details can be referred to Wei Liu, Huazhen Lin, Shurong Zheng and Jin Liu. (2023) <doi:10.1080/01621459.2021.1999818>.
This package provides a comprehensive suite of helper functions designed to facilitate the analysis of genomic annotations from the GENCODE database <https://www.gencodegenes.org/>, supporting both human and mouse genomes. This toolkit enables users to extract, filter, and analyze a wide range of annotation features including genes, transcripts, exons, and introns across different GENCODE releases. It provides functionality for cross-version comparisons, allowing researchers to systematically track annotation updates, structural changes, and feature-level differences between releases. In addition, the package can generate high-quality FASTA files containing donor and acceptor splice site motifs, which are formatted for direct input into the MaxEntScan tool (Yeo and Burge, 2004 <doi:10.1089/1066527041410418>), enabling accurate calculation of splice site strength scores.
This package provides a tool to process and analyse data collected with wearable raw acceleration sensors as described in Migueles and colleagues (JMPB 2019), and van Hees and colleagues (JApplPhysiol 2014; PLoSONE 2015). The package has been developed and tested for binary data from GENEActiv <https://activinsights.com/>, binary (.gt3x) and .csv-export data from Actigraph <https://theactigraph.com> devices, and binary (.cwa) and .csv-export data from Axivity <https://axivity.com>. These devices are currently widely used in research on human daily physical activity. Further, the package can handle accelerometer data file from any other sensor brand providing that the data is stored in csv format. Also the package allows for external function embedding.
This package provides a ggplot2 extension for visualizing vector fields in two-dimensional space. Provides flexible tools for creating vector and stream field layers, visualizing gradients and potential fields, and smoothing vector and scalar data to estimate underlying patterns.
Efficiently manage and process data from oTree experiments. Import oTree data and clean them by using functions that handle messy data, dropouts, and other problematic cases. Create IDs, calculate the time, transfer variables between app data frames, and delete sensitive information. Review your experimental data prior to running the experiment and automatically generate a detailed summary of the variables used in your oTree code. Information on oTree is found in Chen, D. L., Schonger, M., & Wickens, C. (2016) <doi:10.1016/j.jbef.2015.12.001>.
Add vector field layers to ggplots. Ideal for visualising wind speeds, water currents, electric/magnetic fields, etc. Accepts data.frames, simple features (sf), and spatiotemporal arrays (stars) objects as input. Vector fields are depicted as arrows starting at specified locations, and with specified angles and radii.
Define, simulate, and validate stock-flow consistent (SFC) macroeconomic models. The godley R package offers tools to dynamically define model structures by adding variables and specifying governing systems of equations. With it, users can analyze how different macroeconomic structures affect key variables, perform parameter sensitivity analyses, introduce policy shocks, and visualize resulting economic scenarios. The accounting structure of SFC models follows the approach outlined in the seminal study by Godley and Lavoie (2007, ISBN:978-1-137-08599-3), ensuring a comprehensive integration of all economic flows and stocks. The algorithms implemented to solve the models are based on methodologies from Kinsella and O'Shea (2010) <doi:10.2139/ssrn.1729205>, Peressini and Sullivan (1988, ISBN:0-387-96614-5), and contributions by Joao Macalos.
We implemented multiple tests based on the restricted mean time lost (RMTL) for general factorial designs as described in Munko et al. (2024) <doi:10.48550/arXiv.2409.07917>. Therefore, an asymptotic test and a permutation test are incorporated with a Wald-type test statistic. The asymptotic test takes the asymptotic exact dependence structure of the test statistics into account to gain more power. Furthermore, confidence intervals for RMTL contrasts can be calculated and plotted and a stepwise extension that can improve the power of the multiple tests is available.
The GB2 package explores the Generalized Beta distribution of the second kind. Density, cumulative distribution function, quantiles and moments of the distribution are given. Functions for the full log-likelihood, the profile log-likelihood and the scores are provided. Formulas for various indicators of inequality and poverty under the GB2 are implemented. The GB2 is fitted by the methods of maximum pseudo-likelihood estimation using the full and profile log-likelihood, and non-linear least squares estimation of the model parameters. Various plots for the visualization and analysis of the results are provided. Variance estimation of the parameters is provided for the method of maximum pseudo-likelihood estimation. A mixture distribution based on the compounding property of the GB2 is presented (denoted as "compound" in the documentation). This mixture distribution is based on the discretization of the distribution of the underlying random scale parameter. The discretization can be left or right tail. Density, cumulative distribution function, moments and quantiles for the mixture distribution are provided. The compound mixture distribution is fitted using the method of maximum pseudo-likelihood estimation. The fit can also incorporate the use of auxiliary information. In this new version of the package, the mixture case is complemented with new functions for variance estimation by linearization and comparative density plots.
Conducts hierarchical partitioning to calculate individual contributions of each predictor towards adjusted R2 and explained deviance for generalized additive models based on output of gam() and bam() in mgcv package, applying the algorithm in this paper: Lai(2024) <doi:10.1016/j.pld.2024.06.002>.
Package for Genetic Epidemiologic Methods Developed at MSKCC. It contains functions to calculate haplotype specific odds ratio and the power of two stage design for GWAS studies.
The method aims to identify important factors in screening experiments by aggregation over random models as studied in Singh and Stufken (2022) <doi:10.48550/arXiv.2205.13497>. This package provides functions to run the Gauss-Dantzig selector on screening experiments when interactions may be affecting the response. Currently, all functions require each factor to be at two levels coded as +1 and -1.
This package provides a simple API for downloading and reading xml data directly from Lattes <http://lattes.cnpq.br/>.
Density, distribution function, quantile function, and random generation for the generalized Beta and Beta prime distributions. The family of generalized Beta distributions is conjugate for the Bayesian binomial model, and the generalized Beta prime distribution is the posterior distribution of the relative risk in the Bayesian two Poisson samples model when a Gamma prior is assigned to the Poisson rate of the reference group and a Beta prime prior is assigned to the relative risk. References: Laurent (2012) <doi:10.1214/11-BJPS139>, Hamza & Vallois (2016) <doi:10.1016/j.spl.2016.03.014>, Chen & Novick (1984) <doi:10.3102/10769986009002163>.
Identifies biomarkers that exhibit differential response dynamics by time across groups and estimates kinetic properties of biomarkers.
An event-Based framework for building Shiny apps. Instead of relying on standard Shiny reactive objects, this package allow to relying on a lighter set of triggers, so that reactive contexts can be invalidated with more control.
Generates experiments - simulating structured or experimental data as: completely randomized design, randomized block design, latin square design, factorial and split-plot experiments (Ferreira, 2008, ISBN:8587692526; Naes et al., 2007 <doi:10.1002/qre.841>; Rencher et al., 2007, ISBN:9780471754985; Montgomery, 2001, ISBN:0471316490).