Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
It is well known that the distribution of a Gaussian ratio does not follow a Gaussian distribution. The lack of awareness among users of vegetation indices about this non-Gaussian nature could lead to incorrect statistical modeling and interpretation. This package provides tools to accurately handle and analyse such ratios: density function, parameter estimation, simulation. An example on the study of chlorophyll fluorescence can be found in A. El Ghaziri et al. (2023) <doi:10.3390/rs15020528> and another method for parameter estimation is given in Bouhlel et al. (2023) <doi:10.23919/EUSIPCO58844.2023.10290111>.
This package implements a generalized coordinate descent (GCD) algorithm for computing the solution paths of the hybrid Huberized support vector machine (HHSVM) and its generalizations. Supported models include the (adaptive) LASSO and elastic net penalized least squares, logistic regression, HHSVM, squared hinge loss SVM and expectile regression.
Fits Weighted Quantile Sum (WQS) regression (Carrico et al. (2014) <doi:10.1007/s13253-014-0180-3>), a random subset implementation of WQS (Curtin et al. (2019) <doi:10.1080/03610918.2019.1577971>), a repeated holdout validation WQS (Tanner et al. (2019) <doi:10.1016/j.mex.2019.11.008>) and a WQS with 2 indices (Renzetti et al. (2023) <doi:10.3389/fpubh.2023.1289579>) for continuous, binomial, multinomial, Poisson, quasi-Poisson and negative binomial outcomes.
This package provides a collection of functions useful in (vegetation) community analyses and ordinations. Includes automatic species selection for ordination diagrams, NMDS stress/scree plots, species response curves, merging of taxa as well as calculation and sorting of synoptic tables.
This package provides extension types and conversions to between R-native object types and Arrow columnar types. This includes integration among the arrow', nanoarrow', sf', and wk packages such that spatial metadata is preserved wherever possible. Extension type implementations ensure first-class geometry data type support in the arrow and nanoarrow packages.
We implement various tests for the composite hypothesis of testing the fit to the family of inverse Gaussian distributions. Included are methods presented by Allison, J.S., Betsch, S., Ebner, B., and Visagie, I.J.H. (2022) <doi:10.48550/arXiv.1910.14119>, as well as two tests from Henze and Klar (2002) <doi:10.1023/A:1022442506681>. Additionally, the package implements a test proposed by Baringhaus and Gaigall (2015) <doi:10.1016/j.jmva.2015.05.013>. For each test a parametric bootstrap procedure is implemented.
This package provides tools implementing an automated version of the graphic double integration technique (GDI) for volume implementation, and some other related utilities for paleontological image-analysis. GDI was first employed by Jerison (1973) <ISBN:9780323141086> and Hurlburt (1999) <doi:10.1080/02724634.1999.10011145> and is primarily used for volume or mass estimation of (extinct) animals. The package gdi aims to make this technique as convenient and versatile as possible. The core functions of gdi provide utilities for automatically measuring diameters from digital silhouettes provided as image files and calculating volume via graphic double integration with simple elliptical, superelliptical (following Motani 2001 <doi:10.1666/0094-8373(2001)027%3C0735:EBMFST%3E2.0.CO;2>) or complex cross-sectional geometries (see also Zhao 2024 <doi:10.7717/peerj.17479>). Additionally, the package provides functions for estimating the center of mass position (COM), the moment of inertia (I) for 3D shapes and the second moment of area (Ix, Iy, Iz) of 2D cross-sections, as well as for the visualization of results.
Obtain standardized data from multiple Git services, including GitHub and GitLab'. Designed to be Git service-agnostic, this package assists teams with activities spread across various Git platforms by providing a unified way to access repository data.
Aligns peak based on peak retention times and matches homologous peaks across samples. The underlying alignment procedure comprises three sequential steps. (1) Full alignment of samples by linear transformation of retention times to maximise similarity among homologous peaks (2) Partial alignment of peaks within a user-defined retention time window to cluster homologous peaks (3) Merging rows that are likely representing homologous substances (i.e. no sample shows peaks in both rows and the rows have similar retention time means). The algorithm is described in detail in Ottensmann et al., 2018 <doi:10.1371/journal.pone.0198311>.
This package provides geographical faceting functionality for ggplot2'. Geographical faceting arranges a sequence of plots of data for different geographical entities into a grid that preserves some of the geographical orientation.
This package provides curly braces and square brackets in ggplot2 plus matching text. stat_brace() plots braces/brackets to embrace data. stat_bracetext() plots corresponding text, fitting to the braces from stat_brace().
The increasing popularity of geographically weighted (GW) techniques has resulted in the development of several R packages, such as GWmodel'. To facilitate their usages, GWmodelVis provides a shiny'-based interactive visualization toolkit for geographically weighted (GW) models. It includes a number of visualization tools, including dynamic mapping of parameter surfaces, statistical visualization, sonification and exporting videos via FFmpeg'.
Utilizing Generative Artificial Intelligence models like GPT-4 and Gemini Pro as coding and writing assistants for R users. Through these models, GenAI offers a variety of functions, encompassing text generation, code optimization, natural language processing, chat, and image interpretation. The goal is to aid R users in streamlining laborious coding and language processing tasks.
Multidimensional systems allow complex queries to be carried out in an easy way. The geographical dimension, together with the temporal dimension, plays a fundamental role in multidimensional systems. Through this package, vector geographic data layers can be associated to the attributes of geographic dimensions, so that the results of multidimensional queries can be obtained directly as vector layers. The multidimensional structures on which we can define the queries can be created from a flat table or imported directly using functions from this package.
This package provides tools for fitting sparse generalised linear mixed models with l0 regularisation. Selects fixed and random effects under the hierarchy constraint that fixed effects must precede random effects. Uses coordinate descent and local search algorithms to rapidly deliver near-optimal estimates. Gaussian and binomial response families are currently supported. For more details see Thompson, Wand, and Wang (2025) <doi:10.48550/arXiv.2506.20425>.
Data from multi environment agronomic trials, which are often carried out by plant breeders, can be analyzed with the tools offered by this package such as the Additive Main effects and Multiplicative Interaction model or AMMI ('Gauch 1992, ISBN:9780444892409) and the Site Regression model or SREG ('Cornelius 1996, <doi:10.1201/9780367802226>). Since these methods present a poor performance under the presence of outliers and missing values, this package includes robust versions of the AMMI model ('Rodrigues 2016, <doi:10.1093/bioinformatics/btv533>), and also imputation techniques specifically developed for this kind of data ('Arciniegas-Alarcón 2014, <doi:10.2478/bile-2014-0006>).
This package provides a collection of tools which extract a model documentation from GAMS code and comments. In order to use the package you need to install pandoc and pandoc-citeproc first (<https://pandoc.org/>).
Gene sets are fundamental for gene enrichment analysis. The package geneset enables querying gene sets from public databases including GO (Gene Ontology Consortium. (2004) <doi:10.1093/nar/gkh036>), KEGG (Minoru et al. (2000) <doi:10.1093/nar/28.1.27>), WikiPathway (Marvin et al. (2020) <doi:10.1093/nar/gkaa1024>), MsigDb (Arthur et al. (2015) <doi:10.1016/j.cels.2015.12.004>), Reactome (David et al. (2011) <doi:10.1093/nar/gkq1018>), MeSH (Ish et al. (2014) <doi:10.4103/0019-5413.139827>), DisGeNET (Janet et al. (2017) <doi:10.1093/nar/gkw943>), Disease Ontology (Lynn et al. (2011) <doi:10.1093/nar/gkr972>), Network of Cancer Genes (Dimitra et al. (2019) <doi:10.1186/s13059-018-1612-0>) and COVID-19 (Maxim et al. (2020) <doi:10.21203/rs.3.rs-28582/v1>). Gene sets are stored in the list object which provides data frame of geneset and geneset_name'. The geneset has two columns of term ID and gene ID. The geneset_name has two columns of terms ID and term description.
Understanding how features influence a specific response variable becomes crucial in classification problems, with applications ranging from medical diagnosis to customer behavior analysis. This packages provides tools to compute such an influence measure grounded on game theory concepts. In particular, the influence measures presented in Davila-Pena, Saavedra-Nieves, and Casas-Méndez (2024) <doi:10.48550/arXiv.2408.02481> can be obtained.
Implementation of various inference and simulation tools to apply generalized additive models to bivariate dependence structures and non-simplified vine copulas.
Circular genomic permutation approach uses genome wide association studies (GWAS) results to establish the significance of pathway/gene-set associations whilst accounting for genomic structure(Cabrera et al (2012) <doi:10.1534/g3.112.002618>). All single nucleotide polymorphisms (SNPs) in the GWAS are placed in a circular genome according to their location. Then the complete set of SNP association p-values are permuted by rotation with respect to the SNPs genomic locations. Two testing frameworks are available: permutations at the gene level, and permutations at the SNP level. The permutation at the gene level uses Fisher's combination test to calculate a single gene p-value, followed by the hypergeometric test. The SNP count methodology maps each SNP to pathways/gene-sets and calculates the proportion of SNPs for the real and the permutated datasets above a pre-defined threshold. Genomicper requires a matrix of GWAS association p-values and SNPs annotation to genes. Pathways can be obtained from within the package or can be provided by the user.
Downloads and aggregates data for Brazilian government issued bonds directly from the website of Tesouro Direto <https://www.tesourodireto.com.br/>.
Fits multiple-group latent class analysis (LCA) for exploring differences between populations in the data with a multilevel structure. There are two approaches to reflect group differences in glca: fixed-effect LCA (Bandeen-Roche et al (1997) <doi:10.1080/01621459.1997.10473658>; Clogg and Goodman (1985) <doi:10.2307/270847>) and nonparametric random-effect LCA (Vermunt (2003) <doi:10.1111/j.0081-1750.2003.t01-1-00131.x>).
Interact with Google's Cloud Natural Language API <https://cloud.google.com/natural-language/> (v1) via R. The API has four main features, all of which are available through this R package: syntax analysis and part-of-speech tagging, entity analysis, sentiment analysis, and language identification.