Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An interactive mapping tool for geographically weighted correlation and partial correlation. Geographically weighted partial correlation coefficients are calculated following (Percival and Tsutsumida, 2017)<doi:10.1553/giscience2017_01_s36> and are described in greater detail in (Tsutsumida et al., 2019)<doi:10.5194/ica-abs-1-372-2019> and (Percival et al., 2021)<arXiv:2101.03491>.
This package performs variable selection in high-dimensional sparse GLARMA models. For further details we refer the reader to the paper Gomtsyan et al. (2020), <arXiv:2007.08623v1>.
This package provides convenient wrapper functions around the glue library for common string interpolation tasks. The package simplifies the process of combining glue string templating with common R functions like message(), warning(), stop(), print(), cat(), and file writing operations. Instead of manually calling glue() and then passing the result to these functions, glueDo provides direct wrapper functions that handle both steps in a single call. This is particularly useful for logging, error handling, and formatted output in R scripts and packages. The main reference for the underlying glue package is Hester and Bryan (2022) <https://CRAN.R-project.org/package=glue>.
Implement maximum likelihood estimation for Poisson generalized linear models with grouped and right-censored count data. Intended to be used for analyzing grouped and right-censored data, which is widely applied in many branches of social sciences. The algorithm implemented is described in Fu et al., (2021) <doi:10.1111/rssa.12678>.
This package creates bar plots with rounded corners using ggplot2'. The code in this package was adapted from a solution provided by Stack Overflow user sthoch in the following post <https://stackoverflow.com/questions/62176038/r-ggplot2-bar-chart-with-round-corners-on-top-of-bar>.
Data from multi environment agronomic trials, which are often carried out by plant breeders, can be analyzed with the tools offered by this package such as the Additive Main effects and Multiplicative Interaction model or AMMI ('Gauch 1992, ISBN:9780444892409) and the Site Regression model or SREG ('Cornelius 1996, <doi:10.1201/9780367802226>). Since these methods present a poor performance under the presence of outliers and missing values, this package includes robust versions of the AMMI model ('Rodrigues 2016, <doi:10.1093/bioinformatics/btv533>), and also imputation techniques specifically developed for this kind of data ('Arciniegas-Alarcón 2014, <doi:10.2478/bile-2014-0006>).
This package provides tools for studying genotype-phenotype maps for bi-allelic loci underlying quantitative phenotypes. The 0.1 version is released in connection with the publication of Gjuvsland et al (2013) and implements basic line plots and the monotonicity measures for GP maps presented in the paper. Reference: Gjuvsland AB, Wang Y, Plahte E and Omholt SW (2013) Monotonicity is a key feature of genotype-phenotype maps. Frontier in Genetics 4:216 <doi:10.3389/fgene.2013.00216>.
Helps find meaningful patterns in complex genetic experiments. First gimap takes data from paired CRISPR (Clustered regularly interspaced short palindromic repeats) screens that has been pre-processed to counts table of paired gRNA (guide Ribonucleic Acid) reads. The input data will have cell counts for how well cells grow (or don't grow) when different genes or pairs of genes are disabled. The output of the gimap package is genetic interaction scores which are the distance between the observed CRISPR score and the expected CRISPR score. The expected CRISPR scores are what we expect for the CRISPR values to be for two unrelated genes. The further away an observed CRISPR score is from its expected score the more we suspect genetic interaction. The work in this package is based off of original research from the Alice Berger lab at Fred Hutchinson Cancer Center (2021) <doi:10.1016/j.celrep.2021.109597>.
Extended techniques for generalized linear models (GLMs), especially for binary responses, including parametric links and heteroscedastic latent variables.
This package provides a framework for creating plots with glowing points.
Routines for log-linear models of incomplete contingency tables, including some latent class models, via EM and Fisher scoring approaches. Allows bootstrapping. See Espeland and Hui (1987) <doi:10.2307/2531553> for general approach.
Estimation of the generalized beta distribution of the second kind (GB2) and related models using grouped data in form of income shares. The GB2 family is a general class of distributions that provides an accurate fit to income data. GB2group includes functions to estimate the GB2, the Singh-Maddala, the Dagum, the Beta 2, the Lognormal and the Fisk distributions. GB2group deploys two different econometric strategies to estimate these parametric distributions, the equally weighted minimum distance (EWMD) estimator and the optimally weighted minimum distance (OMD) estimator. Asymptotic standard errors are reported for the OMD estimates. Standard errors of the EWMD estimates are obtained by Monte Carlo simulation. See Jorda et al. (2018) <arXiv:1808.09831> for a detailed description of the estimation procedure.
This package provides functions to apply spatial fuzzy unsupervised classification, visualize and interpret results. This method is well suited when the user wants to analyze data with a fuzzy clustering algorithm and to account for the spatial dimension of the dataset. In addition, indexes for estimating the spatial consistency and classification quality are proposed. The methods were originally proposed in the field of brain imagery (seed Cai and al. 2007 <doi:10.1016/j.patcog.2006.07.011> and Zaho and al. 2013 <doi:10.1016/j.dsp.2012.09.016>) and recently applied in geography (see Gelb and Apparicio <doi:10.4000/cybergeo.36414>).
Computes Gregory weights for a given number nodes and function order. Anthony Ralston and Philip Rabinowitz (2001) <ISBN:9780486414546>.
Statistical functions to fit, validate and describe a Generalized Waring Regression Model (GWRM).
An R package that allows for combining tree-boosting with Gaussian process and mixed effects models. It also allows for independently doing tree-boosting as well as inference and prediction for Gaussian process and mixed effects models. See <https://github.com/fabsig/GPBoost> for more information on the software and Sigrist (2022, JMLR) <https://www.jmlr.org/papers/v23/20-322.html> and Sigrist (2023, TPAMI) <doi:10.1109/TPAMI.2022.3168152> for more information on the methodology.
The Graphical Group Ridge GGRidge package package classifies ridge regression predictors in disjoint groups of conditionally correlated variables and derives different penalties (shrinkage parameters) for these groups of predictors. It combines the ridge regression method with the graphical model for high-dimensional data (i.e. the number of predictors exceeds the number of cases) or ill-conditioned data (e.g. in the presence of multicollinearity among predictors). The package reduces the mean square errors and the extent of over-shrinking of predictors as compared to the ridge method.Aldahmani, S. and Zoubeidi, T. (2020) <DOI:10.1080/00949655.2020.1803320>.
Build Open Geospatial Consortium GeoPackage files (<https://www.geopackage.org/>). GDAL utilities for reading and writing spatial data are provided by the terra package. Additional GeoPackage and SQLite features for attributes and tabular data are implemented with the RSQLite package.
This package provides a ggplot2 extension that provides tools for automatically creating scales to focus on subgroups of the data plotted without losing other information.
This package provides tools to streamline the extraction, processing, and visualization of Computable General Equilibrium (CGE) results from GTAP models. Designed for compatibility with both .har and .sl4 files, the package enables users to automate data preparation, apply mapping metadata, and generate high-quality plots and summary tables with minimal coding. GTAPViz supports flexible export options (e.g., Text, CSV, Stata', or Excel formats). This facilitates efficient post-simulation analysis for economic research and policy reporting. Includes helper functions to filter, format, and customize outputs with reproducible styling.
Build display tables from tabular data with an easy-to-use set of functions. With its progressive approach, we can construct display tables with a cohesive set of table parts. Table values can be formatted using any of the included formatting functions. Footnotes and cell styles can be precisely added through a location targeting system. The way in which gt handles things for you means that you don't often have to worry about the fine details.
Easy wrangling and model-free analysis of microbial growth curve data, as commonly output by plate readers. Tools for reshaping common plate reader outputs into tidy formats and merging them with design information, making data easy to work with using gcplyr and other packages. Also streamlines common growth curve processing steps, like smoothing and calculating derivatives, and facilitates model-free characterization and analysis of growth data. See methods at <https://mikeblazanin.github.io/gcplyr/>.
Supports the assessment of functional enrichment analyses obtained for several lists of genes and provides a workflow to analyze them between two species via weighted graphs. Methods are described in Sosa et al. (2023) <doi:10.1016/j.ygeno.2022.110528>.
Likelihood ratio tests for genome-wide association and genome-wide linkage analysis under heterogeneity.