Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Combining a generalized linear model with an additional tree part on the same scale. A four-step procedure is proposed to fit the model and test the joint effect of the selected tree part while adjusting on confounding factors. We also proposed an ensemble procedure based on the bagging to improve prediction accuracy and computed several scores of importance for variable selection. See Cyprien Mbogning et al.'(2014)<doi:10.1186/2043-9113-4-6> and Cyprien Mbogning et al.'(2015)<doi:10.1159/000380850> for an overview of all the methods implemented in this package.
Forest-based statistical estimation and inference. GRF provides non-parametric methods for heterogeneous treatment effects estimation (optionally using right-censored outcomes, multiple treatment arms or outcomes, or instrumental variables), as well as least-squares regression, quantile regression, and survival regression, all with support for missing covariates.
This package provides an R interface to the GeoServer REST API, allowing to upload and publish data in a GeoServer web-application and expose data to OGC Web-Services. The package currently supports all CRUD (Create,Read,Update,Delete) operations on GeoServer workspaces, namespaces, datastores (stores of vector data), featuretypes, layers, styles, as well as vector data upload operations. For more information about the GeoServer REST API, see <https://docs.geoserver.org/stable/en/user/rest/>.
Interact with the Google Analytics APIs <https://developers.google.com/analytics/>, including the Core Reporting API (v3 and v4), Management API, User Activity API GA4's Data API and Admin API and Multi-Channel Funnel API.
This package implements the most common Gaussian process (GP) models using Laplace and expectation propagation (EP) approximations, maximum marginal likelihood (or posterior) inference for the hyperparameters, and sparse approximations for larger datasets.
Download geyser eruption and observation data from the GeyserTimes site (<https://geysertimes.org>) and optionally store it locally. The vignette shows a simple analysis of downloading, accessing, and summarizing the data.
Interface for extra high-dimensional smooth functions for Generalized Additive Models for Location Scale and Shape (GAMLSS) including (adaptive) lasso, ridge, elastic net and least angle regression.
Simple interface to query gitignore.io to fetch gitignore templates that can be included in the .gitignore file. More than 450 templates are currently available.
Builds a LASSO, Ridge, or Elastic Net model with glmnet or cv.glmnet with bootstrap inference statistics (SE, CI, and p-value) for selected coefficients with no shrinkage applied for them. Model performance can be evaluated on test data and an automated alpha selection is implemented for Elastic Net. Parallelized computation is used to speed up the process. The methods are described in Friedman et al. (2010) <doi:10.18637/jss.v033.i01> and Simon et al. (2011) <doi:10.18637/jss.v039.i05>.
OpenAI Gym is a open-source Python toolkit for developing and comparing reinforcement learning algorithms. This is a wrapper for the OpenAI Gym API, and enables access to an ever-growing variety of environments. For more details on OpenAI Gym, please see here: <https://github.com/openai/gym>. For more details on the OpenAI Gym API specification, please see here: <https://github.com/openai/gym-http-api>.
This package provides a collection of sampling formulas for the unified neutral model of biogeography and biodiversity. Alongside the sampling formulas, it includes methods to perform maximum likelihood optimization of the sampling formulas, methods to generate data given the neutral model, and methods to estimate the expected species abundance distribution. Sampling formulas included in the GUILDS package are the Etienne Sampling Formula (Etienne 2005), the guild sampling formula, where guilds are assumed to differ in dispersal ability (Janzen et al. 2015), and the guilds sampling formula conditioned on guild size (Janzen et al. 2015).
This package provides an interface to the GeoNode API, allowing to upload and publish metadata and data in GeoNode'. For more information about the GeoNode API, see <https://geonode.org/>.
Implementation of spatial graph-theoretic genetic gravity models. The model framework is applicable for other types of spatial flow questions. Includes functions for constructing spatial graphs, sampling and summarizing associated raster variables and building unconstrained and singly constrained gravity models.
This package provides a new take on the bar chart. Similar to a waffle style chart but instead of squares the layout resembles a brick wall.
Fits user-specified (GLM-) models with group lasso penalty.
D&D alignment charts show 9 boxes with values for good through evil and values for chaotic through lawful. This package easily creates these alignment charts from user-provided image paths and alignment values.
Realize three approaches for Gene-Environment interaction analysis. All of them adopt Sparse Group Minimax Concave Penalty to identify important G variables and G-E interactions, and simultaneously respect the hierarchy between main G and G-E interaction effects. All the three approaches are available for Linear, Logistic, and Poisson regression. Also realize to mine and construct prior information for G variables and G-E interactions.
This General Regression Neural Networks Package uses various distance functions. It was motivated by Specht (1991, ISBN:1045-9227), and updated from previous published paper Li et al. (2016) <doi:10.1016/j.palaeo.2015.11.005>. This package includes various functions, although "euclidean" distance is used traditionally.
Solves a least squares system Ax~=b (dim(A)=(m,n) with m >= n) with a precondition matrix B: BAx=Bb (dim(B)=(n,m)). Implemented method is based on GMRES (Saad, Youcef; Schultz, Martin H. (1986). "GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems" <doi:10.1137/0907058>) with callback functions, i.e. no explicit A, B or b are required.
The goal of gnonadd is to simplify workflows in the analysis of non-additive effects of sequence variants. This includes variance effects (Ivarsdottir et. al (2017) <doi:10.1038/ng.3928>), correlation effects, interaction effects and dominance effects. The package also includes convenience functions for visualization.
Maximum likelihood estimation, random values generation, density computation and other functions for the exponential-Poisson generalised exponential-Poisson and Poisson-exponential distributions. References include: Rodrigues G. C., Louzada F. and Ramos P. L. (2018). "Poisson-exponential distribution: different methods of estimation". Journal of Applied Statistics, 45(1): 128--144. <doi:10.1080/02664763.2016.1268571>. Louzada F., Ramos, P. L. and Ferreira, H. P. (2020). "Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence". Communications in Statistics--Simulation and Computation, 49(4): 1024--1043. <doi:10.1080/03610918.2018.1491988>. Barreto-Souza W. and Cribari-Neto F. (2009). "A generalization of the exponential-Poisson distribution". Statistics and Probability Letters, 79(24): 2493--2500. <doi:10.1016/j.spl.2009.09.003>.
Train a Gaussian stochastic process model of an unknown function, possibly observed with error, via maximum likelihood or maximum a posteriori (MAP) estimation, run model diagnostics, and make predictions, following Sacks, J., Welch, W.J., Mitchell, T.J., and Wynn, H.P. (1989) "Design and Analysis of Computer Experiments", Statistical Science, <doi:10.1214/ss/1177012413>. Perform sensitivity analysis and visualize low-order effects, following Schonlau, M. and Welch, W.J. (2006), "Screening the Input Variables to a Computer Model Via Analysis of Variance and Visualization", <doi:10.1007/0-387-28014-6_14>.
This package implements the G-Formula method for causal inference with time-varying treatments and confounders using Bayesian multiple imputation methods, as described by Bartlett et al (2025) <doi:10.1177/09622802251316971>. It creates multiple synthetic imputed datasets under treatment regimes of interest using the mice package. These can then be analysed using rules developed for analysing multiple synthetic datasets.
Identifies implausible anthropometric (e.g., height, weight) measurements in irregularly spaced longitudinal datasets, such as those from electronic health records.