Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Datos de nombres inscritos en Chile entre 1920 y 2021, de acuerdo al Servicio de Registro Civil. English: Chilean baby names registered from 1920 to 2021 by the Civil Registry Service.
This package provides methods for estimating univariate long memory-seasonal/cyclical Gegenbauer time series processes. See for example (2022) <doi:10.1007/s00362-022-01290-3>. Refer to the vignette for details of fitting these processes.
Extends the capabilities of ggplot2 by providing grammatical elements and plot helpers designed for visualizing temporal patterns. The package implements a grammar of temporal graphics, which leverages calendar structures to highlight changes over time. The package also provides plot helper functions to quickly produce commonly used time series graphics, including time plots, season plots, and seasonal sub-series plots.
Streamline the creation of common charts by taking care of a lot of data preprocessing and plot customization for the user. Provides a high-level interface to create plots using ggplot2'.
This small collection of functions provides what we call elemental graphics for display of analysis of variance results, David C. Hoaglin, Frederick Mosteller and John W. Tukey (1991, ISBN:978-0-471-52735-0), Paul R. Rosenbaum (1989) <doi:10.2307/2684513>, Robert M. Pruzek and James E. Helmreich <https://jse.amstat.org/v17n1/helmreich.html>. The term elemental derives from the fact that each function is aimed at construction of graphical displays that afford direct visualizations of data with respect to the fundamental questions that drive the particular analysis of variance methods. These functions can be particularly helpful for students and non-statistician analysts. But these methods should be quite generally helpful for work-a-day applications of all kinds, as they can help to identify outliers, clusters or patterns, as well as highlight the role of non-linear transformations of data.
This package implements GINA-X, a genome-wide iterative fine-mapping method designed for non-Gaussian traits. It supports the identification of credible sets of genetic variants.
Gaussian mixture graphical models include Bayesian networks and dynamic Bayesian networks (their temporal extension) whose local probability distributions are described by Gaussian mixture models. They are powerful tools for graphically and quantitatively representing nonlinear dependencies between continuous variables. This package provides a complete framework to create, manipulate, learn the structure and the parameters, and perform inference in these models. Most of the algorithms are described in the PhD thesis of Roos (2018) <https://tel.archives-ouvertes.fr/tel-01943718>.
Quickly and easily perform exploratory data analysis by uploading your data as a csv file. Start generating insights using ggplot2 plots and table1 tables with descriptive stats, all using an easy-to-use point and click Shiny interface.
This package provides a minimal set of routines to calculate the Grantham distance <doi:10.1126/science.185.4154.862>. The Grantham distance attempts to provide a proxy for the evolutionary distance between two amino acids based on three key chemical properties: composition, polarity and molecular volume. In turn, evolutionary distance is used as a proxy for the impact of missense mutations. The higher the distance, the more deleterious the substitution is expected to be.
Implemented are three Wald-type statistic and respective permuted versions for null hypotheses formulated in terms of cumulative hazard rate functions, medians and the concordance measure, respectively, in the general framework of survival factorial designs with possibly heterogeneous survival and/or censoring distributions, for crossed designs with an arbitrary number of factors and nested designs with up to three factors. Ditzhaus, Dobler and Pauly (2020) <doi:10.1177/0962280220980784> Ditzhaus, Janssen, Pauly (2020) <arXiv: 2004.10818v2> Dobler and Pauly (2019) <doi:10.1177/0962280219831316>.
This package provides functions and data are provided that support a course that emphasizes statistical issues of inference and generalizability. The functions are designed to make it straightforward to illustrate the use of cross-validation, the training/test approach, simulation, and model-based estimates of accuracy. Methods considered are Generalized Additive Modeling, Linear and Quadratic Discriminant Analysis, Tree-based methods, and Random Forests.
Generate commonly used plots in the field of design of experiments using ggplot2'. ggDoE currently supports the following plots: alias matrix, box cox transformation, boxplots, lambda plot, regression diagnostic plots, half normal plots, main and interaction effect plots for factorial designs, contour plots for response surface methodology, Pareto plot, and two dimensional projections of a latin hypercube design.
This package provides functions for matching student-answers to teacher answers for a variety of data types.
This package provides ggplot2 extensions for creating dice-based visualizations where each dot position represents a specific categorical variable. The package includes geom_dice() for displaying presence/absence of categorical variables using traditional dice patterns. Each dice position (1-6) represents a different category, with dots shown only when that category is present. This allows intuitive visualization of up to 6 categorical variables simultaneously.
This package provides a collection difference measures for multivariate Gaussian probability density functions, such as the Euclidea mean, the Mahalanobis distance, the Kullback-Leibler divergence, the J-Coefficient, the Minkowski L2-distance, the Chi-square divergence and the Hellinger Coefficient.
This package implements regression models for bounded continuous data in the open interval (0,1) using the five-parameter Generalized Kumaraswamy distribution. Supports modeling all distribution parameters (alpha, beta, gamma, delta, lambda) as functions of predictors through various link functions. Provides efficient maximum likelihood estimation via Template Model Builder ('TMB'), offering comprehensive diagnostics, model comparison tools, and simulation methods. Particularly useful for analyzing proportions, rates, indices, and other bounded response data with complex distributional features not adequately captured by simpler models.
Estimates within and between time point interactions in experience sampling data, using the Graphical vector autoregression model in combination with regularization. See also Epskamp, Waldorp, Mottus & Borsboom (2018) <doi:10.1080/00273171.2018.1454823>.
Likelihood ratio tests for genome-wide association and genome-wide linkage analysis under heterogeneity.
Applies sequential clustering algorithm to animal location data based on user-defined parameters. Plots interactive cluster maps and provides a summary dataframe with attributes for each cluster commonly used as covariates in subsequent modeling efforts. Additional functions provide individual keyhole markup language plots for quick assessment, and export of global positioning system exchange format files for navigation purposes. Methods can be found at <doi:10.1111/2041-210X.13572>.
Detailed functionality for working with the univariate and multivariate Generalized Hyperbolic distribution and its special cases (Hyperbolic (hyp), Normal Inverse Gaussian (NIG), Variance Gamma (VG), skewed Student-t and Gaussian distribution). Especially, it contains fitting procedures, an AIC-based model selection routine, and functions for the computation of density, quantile, probability, random variates, expected shortfall and some portfolio optimization and plotting routines as well as the likelihood ratio test. In addition, it contains the Generalized Inverse Gaussian distribution. See Chapter 3 of A. J. McNeil, R. Frey, and P. Embrechts. Quantitative risk management: Concepts, techniques and tools. Princeton University Press, Princeton (2005).
Scan multiple Git repositories, pull specified files content and process it with large language models. You can summarize the content in specific way, extract information and data, or find answers to your questions about the repositories. The output can be stored in vector database and used for semantic search or as a part of a RAG (Retrieval Augmented Generation) prompt.
The main purpose of this package is to allow fitting of mixture distributions with generalised additive models for location scale and shape models see Chapter 7 of Stasinopoulos et al. (2017) <doi:10.1201/b21973-4>.
Estimates a counterfactual using Gaussian process projection. It takes a dataframe, creates missingness in the desired outcome variable and estimates counterfactual values based on all information in the dataframe. The package writes Stan code, checks it for convergence and adds artificial noise to prevent overfitting and returns a plot of actual values and estimated counterfactual values using r-base plot.
This package provides tools for assessing and diagnosing convergence of Markov Chain Monte Carlo simulations, as well as for graphically display results from full MCMC analysis. The package also facilitates the graphical interpretation of models by providing flexible functions to plot the results against observed variables, and functions to work with hierarchical/multilevel batches of parameters (Fernández-i-Marà n, 2016 <doi:10.18637/jss.v070.i09>).