Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Generalized Order-Restricted Information Criterion (GORIC) value for a set of hypotheses in multivariate linear models and generalised linear models.
When the number of treatments is large with limited experimental resources then Row-Column(RC) designs with multiple units per cell can be used. These designs are called Generalized Row-Column (GRC) designs and are defined as designs with v treatments in p rows and q columns such that the intersection of each row and column (cell) consists of k experimental units. For example (Bailey & Monod (2001)<doi:10.1111/1467-9469.00235>), to conduct an experiment for comparing 4 treatments using 4 plants with leaves at 2 different heights row-column design with two units per cell can be used. A GRC design is said to be structurally complete if corresponding to the intersection of each row and column, there appears at least two treatments. A GRC design is said to be structurally incomplete if corresponding to the intersection of any row and column, there is at least one cell which does not contain any treatment.
Run grass growth simulations using a grass growth model based on ModVege (Jouven, M., P. Carrère, and R. Baumont "Model Predicting Dynamics of Biomass, Structure and Digestibility of Herbage in Managed Permanent Pastures. 1. Model Description." (2006) <doi:10.1111/j.1365-2494.2006.00515.x>). The implementation in this package contains a few additions to the above cited version of ModVege, such as simulations of management decisions, and influences of snow cover. As such, the model is fit to simulate grass growth in mountainous regions, such as the Swiss Alps. The package also contains routines for calibrating the model and helpful tools for analysing model outputs and performance.
Collection of datasets as prepared by Profs. A.P. Gore, S.A. Paranjape, and M.B. Kulkarni of Department of Statistics, Poona University, India. With their permission, first letter of their names forms the name of this package, the package has been built by me and made available for the benefit of R users. This collection requires a rich class of models and can be a very useful building block for a beginner.
The geomod does spatial prediction of the Geotechnical soil properties. It predicts the spatial distribution of Geotechnical properties of soil e.g. shear strength, permeability, plasticity index, Standard Penetration Test (SPT) counts, etc. The output of the prediction takes the form of a map or a series of maps. It uses the interpolation technique where a single or statistically â bestâ estimate of spatial occurrence soil property is determined. The interpolation is based on both the sampled data and a variogram model for the spatial correlation of the sampled data. The single estimate is produced by a Kriging technique.
This package provides functions to assess the goodness of fit of binary, multinomial and ordinal logistic models. Included are the Hosmer-Lemeshow tests (binary, multinomial and ordinal) and the Lipsitz and Pulkstenis-Robinson tests (ordinal).
This package provides a simple way to interact with and extract data from the official Google Knowledge Graph API <https://developers.google.com/knowledge-graph/>.
This package contains an engine for spatially-explicit eco-evolutionary mechanistic models with a modular implementation and several support functions. It allows exploring the consequences of ecological and macroevolutionary processes across realistic or theoretical spatio-temporal landscapes on biodiversity patterns as a general term. Reference: Oskar Hagen, Benjamin Flueck, Fabian Fopp, Juliano S. Cabral, Florian Hartig, Mikael Pontarp, Thiago F. Rangel, Loic Pellissier (2021) "gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth's biodiversity" <doi:10.1371/journal.pbio.3001340>.
This package performs test procedures for general hypothesis testing problems for four multivariate coefficients of variation (Ditzhaus and Smaga, 2023 <arXiv:2301.12009>). We can verify the global hypothesis about equality as well as the particular hypotheses defined by contrasts, e.g., we can conduct post hoc tests. We also provide the simultaneous confidence intervals for contrasts.
This package provides functions that make it easy to reveal ggplot2 graphs incrementally. The functions take a plot produced with ggplot2 and return a list of plots showing data incrementally by panels, layers, groups, the values in an axis or any arbitrary aesthetic.
To create the multiple polygonal point layer for easily discernible shapes, we developed the package, it is like the geom_point of ggplot2'. It can be used to draw the scatter plot.
Spatio-temporal causal inference based on point process data. You provide the raw data of locations and timings of treatment and outcome events, specify counterfactual scenarios, and the package estimates causal effects over specified spatial and temporal windows. See Papadogeorgou, et al. (2022) <doi:10.1111/rssb.12548> and Mukaigawara, et al. (2024) <doi:10.31219/osf.io/5kc6f>.
Providing access to the API for Gas Infrastructure Europe's natural gas transparency platforms <https://agsi.gie.eu/> and <https://alsi.gie.eu/>. Lets the user easily download metadata on companies and gas storage units covered by the API as well as the respective data on regional, country, company or facility level.
Genomic selection is a specialized form of marker assisted selection. The package contains functions to select important genetic markers and predict phenotype on the basis of fitted training data using integrated model framework (Guha Majumdar et. al. (2019) <doi:10.1089/cmb.2019.0223>) developed by combining one additive (sparse additive models by Ravikumar et. al. (2009) <doi:10.1111/j.1467-9868.2009.00718.x>) and one non-additive (hsic lasso by Yamada et. al. (2014) <doi:10.1162/NECO_a_00537>) model.
Analytics to read in and segment raw GENEActiv accelerometer data into epochs and events. For more details on the GENEActiv device, see <https://activinsights.com/resources/geneactiv-support-1-2/>.
Generalization of supervised principal component regression (SPCR; Bair et al., 2006, <doi:10.1198/016214505000000628>) to support continuous, binary, and discrete variables as outcomes and predictors (inspired by the superpc R package <https://cran.r-project.org/package=superpc>).
Collection of packages for work with API Google Ads <https://developers.google.com/google-ads/api/docs/start>, Yandex Direct <https://yandex.ru/dev/direct/>, Yandex Metrica <https://yandex.ru/dev/metrika/>, MyTarget <https://target.my.com/help/advertisers/api_arrangement/ru>, Vkontakte <https://vk.com/dev/methods>, Facebook <https://developers.facebook.com/docs/marketing-apis/> and AppsFlyer <https://support.appsflyer.com/hc/en-us/articles/207034346-Using-Pull-API-aggregate-data>. This packages allows you loading data from ads account and manage your ads materials.
Solves goal programming problems of the weighted and lexicographic type, as well as combinations of the two, as described by Ignizio (1983) <doi:10.1016/0305-0548(83)90003-5>. Allows for a simple human-readable input describing the problem as a series of equations. Relies on the lpSolve package to solve the underlying linear optimisation problem.
Build Open Geospatial Consortium GeoPackage files (<https://www.geopackage.org/>). GDAL utilities for reading and writing spatial data are provided by the terra package. Additional GeoPackage and SQLite features for attributes and tabular data are implemented with the RSQLite package.
This package performs Geometrical Archetypal Analysis after creating Grid Archetypes which are the Cartesian Product of all minimum, maximum variable values. Since the archetypes are fixed now, we have the ability to compute the convex composition coefficients for all our available data points much faster by using the half part of Principal Convex Hull Archetypal method. Additionally we can decide to keep as archetypes the closer to the Grid Archetypes ones. Finally the number of archetypes is always 2 to the power of the dimension of our data points if we consider them as a vector space. Cutler, A., Breiman, L. (1994) <doi:10.1080/00401706.1994.10485840>. Morup, M., Hansen, LK. (2012) <doi:10.1016/j.neucom.2011.06.033>. Christopoulos, DT. (2024) <doi:10.13140/RG.2.2.14030.88642>.
This package provides a set of wrapper functions that mainly re-produces most of the sequence plots rendered with TraMineR::seqplot(). Whereas TraMineR uses base R to produce the plots this library draws on ggplot2'. The plots are produced on the basis of a sequence object defined with TraMineR::seqdef(). The package automates the reshaping and plotting of sequence data. Resulting plots are of class ggplot', i.e. components can be added and tweaked using + and regular ggplot2 functions.
Data-driven approach for arriving at person-specific time series models. The method first identifies which relations replicate across the majority of individuals to detect signal from noise. These group-level relations are then used as a foundation for starting the search for person-specific (or individual-level) relations. See Gates & Molenaar (2012) <doi:10.1016/j.neuroimage.2012.06.026>.
Interface for the GitHub API that enables efficient management of courses on GitHub. It has a functionality for managing organizations, teams, repositories, and users on GitHub and helps automate most of the tedious and repetitive tasks around creating and distributing assignments.
This package provides functions to estimate the disparities across categories (e.g. Black and white) that persists if a treatment variable (e.g. college) is equalized. Makes estimates by treatment modeling, outcome modeling, and doubly-robust augmented inverse probability weighting estimation, with standard errors calculated by a nonparametric bootstrap. Cross-fitting is supported. Survey weights are supported for point estimation but not for standard error estimation; those applying this package with complex survey samples should consult the data distributor to select an appropriate approach for standard error construction, which may involve calling the functions repeatedly for many sets of replicate weights provided by the data distributor. The methods in this package are described in Lundberg (2021) <doi:10.31235/osf.io/gx4y3>.