Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements various tools for storing and analyzing hypergraphs. Handles basic undirected, unweighted hypergraphs, and various ways of creating hypergraphs from a number of representations, and converting between graphs and hypergraphs.
The classical Markowitz's mean-variance portfolio formulation ignores heavy tails and skewness. High-order portfolios use higher order moments to better characterize the return distribution. Different formulations and fast algorithms are proposed for high-order portfolios based on the mean, variance, skewness, and kurtosis. The package is based on the papers: R. Zhou and D. P. Palomar (2021). "Solving High-Order Portfolios via Successive Convex Approximation Algorithms." <arXiv:2008.00863>. X. Wang, R. Zhou, J. Ying, and D. P. Palomar (2022). "Efficient and Scalable High-Order Portfolios Design via Parametric Skew-t Distribution." <arXiv:2206.02412>.
Input multiple versions of a source document, and receive HTML code for a highlighted version of the source document indicating the frequency of occurrence of phrases in the different versions. This method is described in Chapter 3 of Rogers (2024) <https://digitalcommons.unl.edu/dissertations/AAI31240449/>.
Hierarchical Modelling of Species Communities (HMSC) is a model-based approach for analyzing community ecological data. This package implements it in the Bayesian framework with Gibbs Markov chain Monte Carlo (MCMC) sampling (Tikhonov et al. (2020) <doi:10.1111/2041-210X.13345>).
Computes the hemodynamic response function (HRF) for task functional magnetic resonance imaging (fMRI) data. Also includes functions for constructing a design matrix from task fMRI event timings, and for comparing multiple design matrices in a general linear model (GLM). A wrapper function is provided for GLM analysis of CIFTI-format data. Lastly, there are supporting functions which provide visual summaries of the HRFs and design matrices.
Set of R functions to be coupled with the xeus-r jupyter kernel in order to drive execution of code in notebook input cells, how R objects are to be displayed in output cells, and handle two way communication with the front end through comms.
This package provides data for functions typically used in the healthyR package.
Read PLINK 1.9 binary datasets (BED/BIM/FAM) and generate the CSV files required by the Erasmus MC HIrisPlex / HIrisPlex-S webtool <https://hirisplex.erasmusmc.nl/>. It maps PLINK alleles to the webtool's required rsID_Allele columns (0/1/2/NA). No external tools (e.g., PLINK CLI') are required.
Focuses on data processing and visualization in hydrology and climate forecasting. Main function includes data extraction, data downscaling, data resampling, gap filler of precipitation, bias correction of forecasting data, flexible time series plot, and spatial map generation. It is a good pre- processing and post-processing tool for hydrological and hydraulic modellers.
The HistData package provides a collection of small data sets that are interesting and important in the history of statistics and data visualization. The goal of the package is to make these available, both for instructional use and for historical research. Some of these present interesting challenges for graphics or analysis in R.
User-friendly and fast set of functions for estimating parameters of hierarchical Bayesian species distribution models (Latimer and others 2006 <doi:10.1890/04-0609>). Such models allow interpreting the observations (occurrence and abundance of a species) as a result of several hierarchical processes including ecological processes (habitat suitability, spatial dependence and anthropogenic disturbance) and observation processes (species detectability). Hierarchical species distribution models are essential for accurately characterizing the environmental response of species, predicting their probability of occurrence, and assessing uncertainty in the model results.
Makes it easy to extract and combine variables from the HILDA (Household, Income and Labour Dynamics in Australia) survey maintained by the Melbourne Institute <https://melbourneinstitute.unimelb.edu.au/hilda>.
This algorithm is described in detail in the paper "Hedging Forecast Combinations With an Application to the Random Forest" by Beck et al. (2024) <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5032102>. The package provides a function hedgedrf() that can be used to train a Hedged Random Forest model on a dataset, and a function predict.hedgedrf() that can be used to make predictions with the model.
Computes the expectation of the number of transmissions and receptions considering a Hop-by-Hop transport model with limited number of retransmissions per packet. It provides the theoretical results shown in Palma et. al.(2016) <DOI:10.1109/TLA.2016.7555237> and also estimated values based on Monte Carlo simulations. It is also possible to consider random data and ACK probabilities.
Facilitates automated HTML report creation, in particular framed HTML pages and dynamically sortable tables.
Inference approach for jointly modeling correlated count and binary outcomes. This formulation allows simultaneous modeling of zero inflation via the Bernoulli component while providing a more accurate assessment of the Hierarchical Zero-Inflated Poisson's parsimony (Lizandra C. Fabio, Jalmar M. F. Carrasco, Victor H. Lachos and Ming-Hui Chen, Likelihood-based inference for joint modeling of correlated count and binary outcomes with extra variability and zeros, 2025, under submission).
In medical research, supervised heterogeneity analysis has important implications. Assume that there are two types of features. Using both types of features, our goal is to conduct the first supervised heterogeneity analysis that satisfies a hierarchical structure. That is, the first type of features defines a rough structure, and the second type defines a nested and more refined structure. A penalization approach is developed, which has been motivated by but differs significantly from penalized fusion and sparse group penalization. Reference: Ren, M., Zhang, Q., Zhang, S., Zhong, T., Huang, J. & Ma, S. (2022). "Hierarchical cancer heterogeneity analysis based on histopathological imaging features". Biometrics, <doi:10.1111/biom.13426>.
This code provides a method to fit the hidden compact representation model as well as to identify the causal direction on discrete data. We implement an effective solution to recover the above hidden compact representation under the likelihood framework. Please see the Causal Discovery from Discrete Data using Hidden Compact Representation from NIPS 2018 by Ruichu Cai, Jie Qiao, Kun Zhang, Zhenjie Zhang and Zhifeng Hao (2018) <https://nips.cc/Conferences/2018/Schedule?showEvent=11274> for a description of some of our methods.
This package implements assessment of benefit-risk balance using Bayesian Discrete Choice Experiment. For more details see the article by Mukhopadhyay et al. (2019) <DOI:10.1080/19466315.2018.1527248>.
This package provides a procedure that fits derivative curves based on a sequence of quotient differences. In a hierarchical setting the package produces estimates of subject-specific and group-specific derivative curves. In a non-hierarchical setting the package produces a single derivative curve.
Package that accesses the Lichess API (<https://lichess.org/api>). Supports both authenticated and unauthenticated requests. Basic functionality for game and player analysis.
Use the Official Hacker News API through R. Retrieve posts, articles and other items in form of convenient R objects.
Builds on the EMD package to provide additional tools for empirical mode decomposition (EMD) and Hilbert spectral analysis. It also implements the ensemble empirical decomposition (EEMD) and the complete ensemble empirical mode decomposition (CEEMD) methods to avoid mode mixing and intermittency problems found in EMD analysis. The package comes with several plotting methods that can be used to view intrinsic mode functions, the HHT spectrum, and the Fourier spectrum.
This package provides a collection of reweighted marginal hypothesis tests for clustered data, based on reweighting methods of Williamson, J., Datta, S., and Satten, G. (2003) <doi:10.1111/1541-0420.00005>. The tests in this collection are clustered analogs to well-known hypothesis tests in the classical setting, and are appropriate for data with cluster- and/or group-size informativeness. The syntax and output of functions are modeled after common, recognizable functions native to R. Methods used in the package refer to Gregg, M., Datta, S., and Lorenz, D. (2020) <doi:10.1177/0962280220928572>, Nevalainen, J., Oja, H., and Datta, S. (2017) <doi:10.1002/sim.7288> Dutta, S. and Datta, S. (2015) <doi:10.1111/biom.12447>, Lorenz, D., Datta, S., and Harkema, S. (2011) <doi:10.1002/sim.4368>, Datta, S. and Satten, G. (2008) <doi:10.1111/j.1541-0420.2007.00923.x>, Datta, S. and Satten, G. (2005) <doi:10.1198/016214504000001583>.