Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computation of adherence to medications from Electronic Health care Data and visualization of individual medication histories and adherence patterns. The package implements a set of S3 classes and functions consistent with current adherence guidelines and definitions. It allows the computation of different measures of adherence (as defined in the literature, but also several original ones), their publication-quality plotting, the estimation of event duration and time to initiation, the interactive exploration of patient medication history and the real-time estimation of adherence given various parameter settings. It scales from very small datasets stored in flat CSV files to very large databases and from single-thread processing on mid-range consumer laptops to parallel processing on large heterogeneous computing clusters. It exposes a standardized interface allowing it to be used from other programming languages and platforms, such as Python.
This package provides tools for classical parameter estimation of adsorption isotherm models, including both linear and nonlinear forms of the Freundlich, Langmuir, and Temkin isotherms. This package allows users to fit these models to experimental data, providing parameter estimates along with fit statistics such as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). Error metrics are computed to evaluate model performance, and the package produces model fit plots with bootstrapped 95% confidence intervals. Additionally, it generates residual plots for diagnostic assessment of the models. Researchers and engineers in material science, environmental engineering, and chemical engineering can rigorously analyze adsorption behavior in their systems using this straightforward, non-Bayesian approach. For more details, see Harding (1907) <doi:10.2307/2987516>.
Multimodal distributions can be modelled as a mixture of components. The model is derived using the Pareto Density Estimation (PDE) for an estimation of the pdf. PDE has been designed in particular to identify groups/classes in a dataset. Precise limits for the classes can be calculated using the theorem of Bayes. Verification of the model is possible by QQ plot, Chi-squared test and Kolmogorov-Smirnov test. The package is based on the publication of Ultsch, A., Thrun, M.C., Hansen-Goos, O., Lotsch, J. (2015) <DOI:10.3390/ijms161025897>.
The goal of the package aldvmm is to fit adjusted limited dependent variable mixture models of health state utilities. Adjusted limited dependent variable mixture models are finite mixtures of normal distributions with an accumulation of density mass at the limits, and a gap between 100% quality of life and the next smaller utility value. The package aldvmm uses the likelihood and expected value functions proposed by Hernandez Alava and Wailoo (2015) <doi:10.1177/1536867X1501500307> using normal component distributions and a multinomial logit model of probabilities of component membership.
Fits tractable fully parametric odds-based regression models for survival data, including proportional odds (PO), accelerated failure time (AFT), accelerated odds (AO), and General Odds (GO) models in overall survival frameworks. Given at least an R function specifying the survivor, hazard rate and cumulative distribution functions, any user-defined parametric distribution can be fitted. We applied and evaluated a minimum of seventeen (17) various baseline distributions that can handle different failure rate shapes for each of the four different proposed odds-based regression models. For more information see Bennet et al., (1983) <doi:10.1002/sim.4780020223>, and Muse et al., (2022) <doi:10.1016/j.aej.2022.01.033>.
Lets you open a fixed-width ASCII file (.txt or .dat) that has an accompanying setup file (.sps or .sas). These file combinations are sometimes referred to as .txt+.sps, .txt+.sas, .dat+.sps, or .dat+.sas. This will only run in a txt-sps or txt-sas pair in which the setup file contains instructions to open that text file. It will NOT open other text files, .sav, .sas, or .por data files. Fixed-width ASCII files with setup files are common in older (pre-2000) government data.
Calculate ActiGraph counts from the X, Y, and Z axes of a triaxial accelerometer. This work was inspired by Neishabouri et al. who published the article "Quantification of Acceleration as Activity Counts in ActiGraph Wearables" on February 24, 2022. The link to the article (<https://pubmed.ncbi.nlm.nih.gov/35831446>) and python implementation of this code (<https://github.com/actigraph/agcounts>).
This package provides a number of functions to create and analyze factorial plans according to the Design of Experiments (DoE) approach, with the addition of some utility function to perform some statistical analyses. DoE approach follows the approach in "Design and Analysis of Experiments" by Douglas C. Montgomery (2019, ISBN:978-1-119-49244-3). The package also provides utilities used in the course "Analysis of Data and Statistics" at the University of Trento, Italy.
This package provides a weekly summary of Hass Avocado sales for the contiguous US from January 2017 through December 20204. See the package website for more information, documentation, and examples. Data source: Haas Avocado Board <https://hassavocadoboard.com/category-data/>.
This package provides a collection of tools to deal with raster maps.
Empirical likelihood-based approximate Bayesian Computation. Approximates the required posterior using empirical likelihood and estimated differential entropy. This is achieved without requiring any specification of the likelihood or estimating equations that connects the observations with the underlying parameters. The procedure is known to be posterior consistent. More details can be found in Chaudhuri, Ghosh, and Kim (2024) <doi:10.1002/SAM.11711>.
This package creates interactive Venn diagrams using the amCharts5 library for JavaScript'. They can be used directly from the R console, from RStudio', in shiny applications, and in rmarkdown documents.
You can use this package to create custom pipeline badges in a standard svg format. This is useful for a company to use internally, where it may not be possible to create badges through external providers. This project was inspired by the anybadge library in python.
Data from the anxiety and confinement study from Alvarado-Aravena et al. (2022) <doi:10.3390/bs12100398>.
Retrieve air quality data via the AirNow <https://www.airnow.gov/> API.
Is a collection of models to analyze genome scale codon data using a Bayesian framework. Provides visualization routines and checkpointing for model fittings. Currently published models to analyze gene data for selection on codon usage based on Ribosome Overhead Cost (ROC) are: ROC (Gilchrist et al. (2015) <doi:10.1093/gbe/evv087>), and ROC with phi (Wallace & Drummond (2013) <doi:10.1093/molbev/mst051>). In addition AnaCoDa contains three currently unpublished models. The FONSE (First order approximation On NonSense Error) model analyzes gene data for selection on codon usage against of nonsense error rates. The PA (PAusing time) and PANSE (PAusing time + NonSense Error) models use ribosome footprinting data to analyze estimate ribosome pausing times with and without nonsense error rate from ribosome footprinting data.
Auto-GO is a framework that enables automated, high quality Gene Ontology enrichment analysis visualizations. It also features a handy wrapper for Differential Expression analysis around the DESeq2 package described in Love et al. (2014) <doi:10.1186/s13059-014-0550-8>. The whole framework is structured in different, independent functions, in order to let the user decide which steps of the analysis to perform and which plot to produce.
Random variate generation, density, CDF and quantile function for the Argus distribution. Especially, it includes for random variate generation a flexible inversion method that is also fast in the varying parameter case. A Ratio-of-Uniforms method is provided as second alternative.
Allows you to connect to an Alfresco content management repository and interact with its contents using simple and intuitive functions. You will be able to establish a connection session to the Alfresco repository, read and upload content and manage folder hierarchies. For more details on the Alfresco content management repository see <https://www.alfresco.com/ecm-software/document-management>.
This package contains a shiny application called AdEPro (Animation of Adverse Event Profiles) which (audio-)visualizes adverse events occurring in clinical trials. As this data is usually considered sensitive, this tool is provided as a stand-alone application that can be launched from any local machine on which the data is stored.
Package to query the Twitter Academic Research Product Track, providing access to full-archive search and other v2 API endpoints. Functions are written with academic research in mind. They provide flexibility in how the user wishes to store collected data, and encourage regular storage of data to mitigate loss when collecting large volumes of tweets. They also provide workarounds to manage and reshape the format in which data is provided on the client side.
Client for AWS Transcribe <https://aws.amazon.com/documentation/transcribe>, a cloud transcription service that can convert an audio media file in English and other languages into a text transcript.
This package provides a toolkit to predict antimicrobial peptides from protein sequences on a genome-wide scale. It incorporates two support vector machine models ("precursor" and "mature") trained on publicly available antimicrobial peptide data using calculated physico-chemical and compositional sequence properties described in Meher et al. (2017) <doi:10.1038/srep42362>. In order to support genome-wide analyses, these models are designed to accept any type of protein as input and calculation of compositional properties has been optimised for high-throughput use. For best results it is important to select the model that accurately represents your sequence type: for full length proteins, it is recommended to use the default "precursor" model. The alternative, "mature", model is best suited for mature peptide sequences that represent the final antimicrobial peptide sequence after post-translational processing. For details see Fingerhut et al. (2020) <doi:10.1093/bioinformatics/btaa653>. The ampir package is also available via a Shiny based GUI at <https://ampir.marine-omics.net/>.
This package provides a customisable set of tools for assessing and grading R or R-markdown scripts from students. It allows for checking correctness of code output, runtime statistics and static code analysis. The latter feature is made possible by representing R expressions using a tree structure.