Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a correlation-based batch process for fast, accurate imputation for high dimensional missing data problems via chained random forests. See Waggoner (2023) <doi:10.1007/s00180-023-01325-9> for more on hdImpute', Stekhoven and Bühlmann (2012) <doi:10.1093/bioinformatics/btr597> for more on missForest', and Mayer (2022) <https://github.com/mayer79/missRanger> for more on missRanger'.
Factor models have been widely applied in areas such as economics and finance, and the well-known heavy-tailedness of macroeconomic/financial data should be taken into account when conducting factor analysis. We propose two algorithms to do robust factor analysis by considering the Huber loss. One is based on minimizing the Huber loss of the idiosyncratic error's L2 norm, which turns out to do Principal Component Analysis (PCA) on the weighted sample covariance matrix and thereby named as Huber PCA. The other one is based on minimizing the element-wise Huber loss, which can be solved by an iterative Huber regression algorithm. In this package we also provide the code for traditional PCA, the Robust Two Step (RTS) method by He et al. (2022) and the Quantile Factor Analysis (QFA) method by Chen et al. (2021) and He et al. (2023).
Functions, data sets, analyses and examples from the second edition of the book A Handbook of Statistical Analyses Using R (Brian S. Everitt and Torsten Hothorn, Chapman & Hall/CRC, 2008). The first chapter of the book, which is entitled An Introduction to R'', is completely included in this package, for all other chapters, a vignette containing all data analyses is available. In addition, the package contains Sweave code for producing slides for selected chapters (see HSAUR2/inst/slides).
This package provides methods for implementing hierarchical age length keys to estimate fish ages from lengths using data borrowing. Users can create hierarchical age length keys and use them to assign ages given length.
High throughput toxicokinetics ("HTTK") is the combination of 1) chemical-specific in vitro measurements or in silico predictions and 2) generic mathematical models, to predict absorption, distribution, metabolism, and excretion by the body. HTTK methods have been described by Pearce et al. (2017) (<doi:10.18637/jss.v079.i04>) and Breen et al. (2021) (<doi:10.1080/17425255.2021.1935867>). Here we provide examples (vignettes) applying HTTK to solve various problems in bioinformatics, toxicology, and exposure science. In accordance with Davidson-Fritz et al. (2025) (<doi:10.1371/journal.pone.0321321>), whenever a new HTTK model is developed, the code to generate the figures evaluating that model is added as a new vignettte.
Holistic generalized linear models (HGLMs) extend generalized linear models (GLMs) by enabling the possibility to add further constraints to the model. The holiglm package simplifies estimating HGLMs using convex optimization. Additional information about the package can be found in the reference manual, the README and the accompanying paper <doi:10.18637/jss.v108.i07>.
Maintenance has been discontinued for this package. It has been superseded by GeneralizedHyperbolic'. GeneralizedHyperbolic includes all the functionality of HyperbolicDist and more and is based on a more rational design. HyperbolicDist provides functions for the hyperbolic and related distributions. Density, distribution and quantile functions and random number generation are provided for the hyperbolic distribution, the generalized hyperbolic distribution, the generalized inverse Gaussian distribution and the skew-Laplace distribution. Additional functionality is provided for the hyperbolic distribution, including fitting of the hyperbolic to data.
Provide users with a framework to learn the intricacies of the Hamiltonian Monte Carlo algorithm with hands-on experience by tuning and fitting their own models. All of the code is written in R. Theoretical references are listed below:. Neal, Radford (2011) "Handbook of Markov Chain Monte Carlo" ISBN: 978-1420079418, Betancourt, Michael (2017) "A Conceptual Introduction to Hamiltonian Monte Carlo" <arXiv:1701.02434>, Thomas, S., Tu, W. (2020) "Learning Hamiltonian Monte Carlo in R" <arXiv:2006.16194>, Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013) "Bayesian Data Analysis" ISBN: 978-1439840955, Agresti, Alan (2015) "Foundations of Linear and Generalized Linear Models ISBN: 978-1118730034, Pinheiro, J., Bates, D. (2006) "Mixed-effects Models in S and S-Plus" ISBN: 978-1441903174.
This package provides a non-parametric test founded upon the principles of the Kolmogorov-Smirnov (KS) test, referred to as the KS Predictive Accuracy (KSPA) test. The KSPA test is able to serve two distinct purposes. Initially, the test seeks to determine whether there exists a statistically significant difference between the distribution of forecast errors, and secondly it exploits the principles of stochastic dominance to determine whether the forecasts with the lower error also reports a stochastically smaller error than forecasts from a competing model, and thereby enables distinguishing between the predictive accuracy of forecasts. KSPA test has been described in : Hassani and Silva (2015) <doi:10.3390/econometrics3030590>.
Template R package with minimal setup to use Rust code in R without hacks or frameworks. Includes basic examples of importing cargo dependencies, spawning threads and passing numbers or strings from Rust to R. Cargo crates are automatically vendored in the R source package to support offline installation. The GitHub repository for this package has more details and also explains how to set up CI. This project was first presented at Erum2018 to showcase R-Rust integration <https://jeroen.github.io/erum2018/>; for a real world use-case, see the gifski package on CRAN'.
Uses support vector machines to identify a perfectly separating hyperplane (linear or curvilinear) between two entities in high-dimensional space. If this plane exists, the entities do not overlap. Applications include overlap detection in morphological, resource or environmental dimensions. More details can be found in: Brown et al. (2020) <doi:10.1111/2041-210X.13363> .
The different methods for defining, detecting, and categorising the extreme events known as heatwaves or cold-spells, as first proposed in Hobday et al. (2016) <doi: 10.1016/j.pocean.2015.12.014> and Hobday et al. (2018) <https://www.jstor.org/stable/26542662>. The functions in this package work on both air and water temperature data of hourly and daily temporal resolution. These detection algorithms may be used on non-temperature data as well.
Using hybrid data, this package created a vividly colored hybrid heat map. The input is two files which are auto-selected. The first file has three columns, the first two for pairs of species, with the third column for the hybrid experiment code (an integer). The second file is a list of code and their descriptions in two columns. The output is a figure showing the hybrid heat map with a color legend.
This package provides a scalable implementation of the highly adaptive lasso algorithm, including routines for constructing sparse matrices of basis functions of the observed data, as well as a custom implementation of Lasso regression tailored to enhance efficiency when the matrix of predictors is composed exclusively of indicator functions. For ease of use and increased flexibility, the Lasso fitting routines invoke code from the glmnet package by default. The highly adaptive lasso was first formulated and described by MJ van der Laan (2017) <doi:10.1515/ijb-2015-0097>, with practical demonstrations of its performance given by Benkeser and van der Laan (2016) <doi:10.1109/DSAA.2016.93>. This implementation of the highly adaptive lasso algorithm was described by Hejazi, Coyle, and van der Laan (2020) <doi:10.21105/joss.02526>.
Hypergeometric Intersection distributions are a broad group of distributions that describe the probability of picking intersections when drawing independently from two (or more) urns containing variable numbers of balls belonging to the same n categories. <arXiv:1305.0717>.
This package provides methods for analysing and forecasting hierarchical and grouped time series. The available forecast methods include bottom-up, top-down, optimal combination reconciliation (Hyndman et al. 2011) <doi:10.1016/j.csda.2011.03.006>, and trace minimization reconciliation (Wickramasuriya et al. 2018) <doi:10.1080/01621459.2018.1448825>.
This package contains miscellaneous functions useful for managing NetCDF files (see <https://en.wikipedia.org/wiki/NetCDF>), get moon phase and time for sun rise and fall, tide level, analyse and reconstruct periodic time series of temperature with irregular sinusoidal pattern, show scales and wind rose in plot with change of color of text, Metropolis-Hastings algorithm for Bayesian MCMC analysis, plot graphs or boxplot with error bars, search files in disk by there names or their content, read the contents of all files from a folder at one time.
Pure set data visualization approaches are often limited in scalability due to the combinatorial explosion of distinct set families as the number of sets under investigation increases. hierarchicalSets applies a set centric hierarchical clustering of the sets under investigation and uses this hierarchy as a basis for a range of scalable visual representations. hierarchicalSets is especially well suited for collections of sets that describe comparable comparable entities as it relies on the sets to have a meaningful relational structure.
The "Hit and Run" Markov Chain Monte Carlo method for sampling uniformly from convex shapes defined by linear constraints, and the "Shake and Bake" method for sampling from the boundary of such shapes. Includes specialized functions for sampling normalized weights with arbitrary linear constraints. Tervonen, T., van Valkenhoef, G., Basturk, N., and Postmus, D. (2012) <doi:10.1016/j.ejor.2012.08.026>. van Valkenhoef, G., Tervonen, T., and Postmus, D. (2014) <doi:10.1016/j.ejor.2014.06.036>.
Allows to evaluate Higher Order Assortativity of complex networks defined through objects of class igraph from the package of the same name. The package returns a result also for directed and weighted graphs. References, Arcagni, A., Grassi, R., Stefani, S., & Torriero, A. (2017) <doi:10.1016/j.ejor.2017.04.028> Arcagni, A., Grassi, R., Stefani, S., & Torriero, A. (2021) <doi:10.1016/j.jbusres.2019.10.008> Arcagni, A., Cerqueti, R., & Grassi, R. (2023) <doi:10.48550/arXiv.2304.01737>.
There are growing concerns on flow data in diverse fields including trade, migration, knowledge diffusion, disease spread, and transportation. The package is an effective visual support to learn the pattern of flow which is called halfcircle diagram. The flow between two nodes placed on the center line of a circle is represented using a half circle drawn from the origin to the destination in a clockwise direction. Through changing the order of nodes, the halfcircle diagram enables users to examine the complex relationship between bidirectional flow and each potential determinants. Furthermore, the halfmeancenter function, which calculates (un) weighted mean center of half circles, makes the comparison easier.
Calculate clinical scores for hidradenitis suppurativa (HS), a dermatologic disease. The scores are typically used for evaluation of efficacy in clinical trials. The scores are not commonly used in clinical practice. The specific scores implemented are Hidradenitis Suppurativa Clinical Response (HiSCR) (Kimball, et al. (2015) <doi:10.1111/jdv.13216>), Hidradenitis Suppurativa Area and Severity Index Revised (HASI-R) (Goldfarb, et al. (2020) <doi:10.1111/bjd.19565>), hidradenitis suppurativa Physician Global Assessment (HS PGA) (Marzano, et al. (2020) <doi:10.1111/jdv.16328>), and the International Hidradenitis Suppurativa Severity Score System (IHS4) (Zouboulis, et al. (2017) <doi:10.1111/bjd.15748>).
An implementation of high-probability lower bounds for the total variance distance as introduced in Michel & Naef & Meinshausen (2020) <arXiv:2005.06006>. An estimated lower-bound (with high-probability) on the total variation distance between two probability distributions from which samples are observed can be obtained with the function HPLB.
This package provides an example HiC dataset and two examples of HiCociety outputs from a function named hic2community(). The data are intended for demonstration purposes only and kept small enough to be distributed via CRAN.