Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides datasets used for analysis and visualizations in the open-access Hello Data Science book.
This package provides a protocol that facilitates the processing and analysis of Hydrogen-Deuterium Exchange Mass Spectrometry data using p-value statistics and Critical Interval analysis. It provides a pipeline for analyzing data from HDXExaminer (Sierra Analytics, Trajan Scientific), automating matching and comparison of protein states through Welch's T-test and the Critical Interval statistical framework. Additionally, it simplifies data export, generates PyMol scripts, and ensures calculations meet publication standards. HDXBoxeR assists in various aspects of hydrogen-deuterium exchange data analysis, including reprocessing data, calculating parameters, identifying significant peptides, generating plots, and facilitating comparison between protein states. For details check papers by Hageman and Weis (2019) <doi:10.1021/acs.analchem.9b01325> and Masson et al. (2019) <doi:10.1038/s41592-019-0459-y>. HDXBoxeR citation: Janowska et al. (2024) <doi:10.1093/bioinformatics/btae479>.
This package provides functions for processing, analysis and visualization of Hydrogen Deuterium eXchange monitored by Mass Spectrometry experiments (HDX-MS) (<doi:10.1093/bioinformatics/btaa587>). HaDeX introduces a new standardized and reproducible workflow for the analysis of the HDX-MS data, including novel uncertainty intervals. Additionally, it covers data exploration, quality control and generation of publication-quality figures. All functionalities are also available in the in-built Shiny app.
Datasets and code examples that accompany our book Visser & Speekenbrink (2021), "Mixture and Hidden Markov Models with R", <https://depmix.github.io/hmmr/>.
This package provides utility functions that are simply, frequently used, but may require higher performance that what can be obtained from base R. Incidentally provides support for reverse geocoding', such as matching a point with its nearest neighbour in another array. Used as a complement to package hutils by sacrificing compilation or installation time for higher running speeds. The name is a portmanteau of the author and Rcpp'.
Computes the scores and ranks candidates according to voting rules electing the highest median grade. Based on "Tie-breaking the highest median: alternatives to the majority judgment", A. Fabre, Social Choice & Welfare (forthcoming as of 2020). The paper is available here: <https://github.com/bixiou/highest_median/raw/master/Tie-breaking%20Highest%20Median%20-%20Fabre%202019.pdf>. Functions to plot the voting profiles can be found on github: <https://github.com/bixiou/highest_median/blob/master/packages_functions_data.R>.
Probability functions and other utilities for the generalized Hermite distribution.
Cross-species identification of novel gene candidates using the NCBI web service is provided. Further, sets of miRNA target genes can be identified by using the targetscan.org API.
This package provides two functions that implement the one-sided and two-sided versions of the Hodrick-Prescott filter. The one-sided version is a Kalman filter-based implementation, whereas the two- sided version uses sparse matrices for improved efficiency. References: Hodrick, R. J., and Prescott, E. C. (1997) <doi:10.2307/2953682> Mcelroy, T. (2008) <doi:10.1111/j.1368-423X.2008.00230.x> Meyer-Gohde, A. (2010) <https://ideas.repec.org/c/dge/qmrbcd/181.html> For more references, see the vignette.
Most common exact, asymptotic and resample based tests are provided for testing the homogeneity of variances of k normal distributions under normality. These tests are Barlett, Bhandary & Dai, Brown & Forsythe, Chang et al., Gokpinar & Gokpinar, Levene, Liu and Xu, Gokpinar. Also, a data generation function from multiple normal distribution is provided using any multiple normal parameters. Bartlett, M. S. (1937) <doi:10.1098/rspa.1937.0109> Bhandary, M., & Dai, H. (2008) <doi:10.1080/03610910802431011> Brown, M. B., & Forsythe, A. B. (1974).<doi:10.1080/01621459.1974.10482955> Chang, C. H., Pal, N., & Lin, J. J. (2017) <doi:10.1080/03610918.2016.1202277> Gokpinar E. & Gokpinar F. (2017) <doi:10.1080/03610918.2014.955110> Liu, X., & Xu, X. (2010) <doi:10.1016/j.spl.2010.05.017> Levene, H. (1960) <https://cir.nii.ac.jp/crid/1573950400526848896> Gökpınar, E. (2020) <doi:10.1080/03610918.2020.1800037>.
This package provides a consistent API for hypothesis testing built on principles from Structure and Interpretation of Computer Programs': data abstraction, closure (combining tests yields tests), and higher-order functions (transforming tests). Implements z-tests, Wald tests, likelihood ratio tests, Fisher's method for combining p-values, and multiple testing corrections. Designed for use by other packages that want to wrap their hypothesis tests in a consistent interface.
This package provides methods for correcting heaping (digit preference) in survey data at the individual record level. Age heaping, where respondents disproportionately report ages ending in 0 or 5, is a common phenomenon that can distort demographic analyses. Unlike traditional smoothing methods that only correct aggregated statistics, this package corrects individual values by replacing a calculated proportion of heaped observations with draws from fitted truncated distributions (log-normal, normal, or uniform). Supports 5-year and 10-year heaping patterns, single heap correction, and optional model-based adjustment to preserve covariate relationships.
Seed germinates through the physical process of water uptake by dry seed driven by the difference in water potential between the seed and the water. There exists seed-to-seed variability in the base seed water potential. Hence, there is a need for a distribution such that a viable seed with its base seed water potential germinates if and only if the soil water potential is more than the base seed water potential. This package estimates the stress tolerance and uniformity parameters of the seed lot for germination under various temperatures by using the hydro-time model of counts of germinated seeds under various water potentials. The distribution of base seed water potential has been considered to follow Normal, Logistic and Extreme value distribution. The estimated proportion of germinated seeds along with the estimates of stress and uniformity parameters are obtained using a generalised linear model. The significance test of the above parameters for within and between temperatures is also performed in the analysis. Details can be found in Kebreab and Murdoch (1999) <doi:10.1093/jxb/50.334.655> and Bradford (2002) <https://www.jstor.org/stable/4046371>.
An implementation for high-dimensional time series analysis methods, including factor model for vector time series proposed by Lam and Yao (2012) <doi:10.1214/12-AOS970> and Chang, Guo and Yao (2015) <doi:10.1016/j.jeconom.2015.03.024>, martingale difference test proposed by Chang, Jiang and Shao (2023) <doi:10.1016/j.jeconom.2022.09.001>, principal component analysis for vector time series proposed by Chang, Guo and Yao (2018) <doi:10.1214/17-AOS1613>, cointegration analysis proposed by Zhang, Robinson and Yao (2019) <doi:10.1080/01621459.2018.1458620>, unit root test proposed by Chang, Cheng and Yao (2022) <doi:10.1093/biomet/asab034>, white noise test proposed by Chang, Yao and Zhou (2017) <doi:10.1093/biomet/asw066>, CP-decomposition for matrix time series proposed by Chang et al. (2023) <doi:10.1093/jrsssb/qkac011> and Chang et al. (2024) <doi:10.48550/arXiv.2410.05634>, and statistical inference for spectral density matrix proposed by Chang et al. (2022) <doi:10.48550/arXiv.2212.13686>.
The Ljung-Box test is one of the most important tests for time series diagnostics and model selection. The Hassani SACF (Sum of the Sample Autocorrelation Function) Theorem , however, indicates that the sum of sample autocorrelation function is always fix for any stationary time series with arbitrary length. This package confirms for sensitivity of the Ljung-Box test to the number of lags involved in the test and therefore it should be used with extra caution. The Hassani SACF Theorem has been described in : Hassani, Yeganegi and M. R. (2019) <doi:10.1016/j.physa.2018.12.028>.
Implemented here are procedures for fitting hierarchical generalized linear models (HGLM). It can be used for linear mixed models and generalized linear mixed models with random effects for a variety of links and a variety of distributions for both the outcomes and the random effects. Fixed effects can also be fitted in the dispersion part of the mean model. As statistical models, HGLMs were initially developed by Lee and Nelder (1996) <https://www.jstor.org/stable/2346105?seq=1>. We provide an implementation (Ronnegard, Alam and Shen 2010) <https://journal.r-project.org/archive/2010-2/RJournal_2010-2_Roennegaard~et~al.pdf> following Lee, Nelder and Pawitan (2006) <ISBN: 9781420011340> with algorithms extended for spatial modeling (Alam, Ronnegard and Shen 2015) <https://journal.r-project.org/archive/2015/RJ-2015-017/RJ-2015-017.pdf>.
Generates valid HTML tag strings for HTML5 elements documented by Mozilla. Attributes are passed as named lists, with names being the attribute name and values being the attribute value. Attribute values are automatically double-quoted. To declare a DOCTYPE, wrap html() with function doctype(). Mozilla's documentation for HTML5 is available here: <https://developer.mozilla.org/en-US/docs/Web/HTML/Element>. Elements marked as obsolete are not included.
Offers a convenient way to compute parameters in the framework of the theory of vocational choice introduced by J.L. Holland, (1997). A comprehensive summary to this theory of vocational choice is given in Holland, J.L. (1997). Making vocational choices. A theory of vocational personalities and work environments. Lutz, FL: Psychological Assessment.
Simulate and analyze hierarchical composite endpoints. Includes implementation for the kidney hierarchical composite endpoint as defined in Heerspink HL et al (2023) â Development and validation of a new hierarchical composite end point for clinical trials of kidney disease progressionâ (Journal of the American Society of Nephrology 34 (2): 2025â 2038, <doi:10.1681/ASN.0000000000000243>). Win odds, also called Wilcoxon-Mann-Whitney or success odds, is the main analysis method. Other win statistics (win probability, win ratio, net benefit) are also implemented in the univariate case, provided there is no censoring. The win probability analysis is based on the Brunner-Munzel test and uses the DeLong-DeLong-Clarke-Pearson variance estimator, as described by Brunner and Konietschke (2025) in â An unbiased rank-based estimator of the Mannâ Whitney variance including the case of tiesâ (Statistical Papers 66 (1): 20, <doi:10.1007/s00362-024-01635-0>). Includes implementation of a new Wilson-type, compatible confidence interval for the win odds, as proposed by Schüürhuis, Konietschke, Brunner (2025) in â A new approach to the nonparametric Behrensâ Fisher problem with compatible confidence intervals.â (Biometrical Journal 67 (6), <doi:10.1002/bimj.70096>). Stratification and covariate adjustment are performed based on the methodology presented by Koch GG et al. in â Issues for covariance analysis of dichotomous and ordered categorical data from randomized clinical trials and non-parametric strategies for addressing themâ (Statistics in Medicine 17 (15-16): 1863â 92). For a review, see Gasparyan SB et al (2021) â Adjusted win ratio with stratification: Calculation methods and interpretationâ (Statistical Methods in Medical Research 30 (2): 580â 611, <doi:10.1177/0962280220942558>).
This package provides functions to implement a hierarchical approach which is designed to perform joint analysis of summary statistics using the framework of Mendelian Randomization or transcriptome analysis. Reference: Lai Jiang, Shujing Xu, Nicholas Mancuso, Paul J. Newcombe, David V. Conti (2020). "A Hierarchical Approach Using Marginal Summary Statistics for Multiple Intermediates in a Mendelian Randomization or Transcriptome Analysis." <bioRxiv><doi:10.1101/2020.02.03.924241>.
Fits sparse interaction models for continuous and binary responses subject to the strong (or weak) hierarchy restriction that an interaction between two variables only be included if both (or at least one of) the variables is included as a main effect. For more details, see Bien, J., Taylor, J., Tibshirani, R., (2013) "A Lasso for Hierarchical Interactions." Annals of Statistics. 41(3). 1111-1141.
User-friendly and fast set of functions for estimating parameters of hierarchical Bayesian species distribution models (Latimer and others 2006 <doi:10.1890/04-0609>). Such models allow interpreting the observations (occurrence and abundance of a species) as a result of several hierarchical processes including ecological processes (habitat suitability, spatial dependence and anthropogenic disturbance) and observation processes (species detectability). Hierarchical species distribution models are essential for accurately characterizing the environmental response of species, predicting their probability of occurrence, and assessing uncertainty in the model results.
Makes it easy to extract and combine variables from the HILDA (Household, Income and Labour Dynamics in Australia) survey maintained by the Melbourne Institute <https://melbourneinstitute.unimelb.edu.au/hilda>.
We provide a collection of various classical tests and latest normal-reference tests for comparing high-dimensional mean vectors including two-sample and general linear hypothesis testing (GLHT) problem. Some existing tests for two-sample problem [see Bai, Zhidong, and Hewa Saranadasa.(1996) <https://www.jstor.org/stable/24306018>; Chen, Song Xi, and Ying-Li Qin.(2010) <doi:10.1214/09-aos716>; Srivastava, Muni S., and Meng Du.(2008) <doi:10.1016/j.jmva.2006.11.002>; Srivastava, Muni S., Shota Katayama, and Yutaka Kano.(2013)<doi:10.1016/j.jmva.2012.08.014>]. Normal-reference tests for two-sample problem [see Zhang, Jin-Ting, Jia Guo, Bu Zhou, and Ming-Yen Cheng.(2020) <doi:10.1080/01621459.2019.1604366>; Zhang, Jin-Ting, Bu Zhou, Jia Guo, and Tianming Zhu.(2021) <doi:10.1016/j.jspi.2020.11.008>; Zhang, Liang, Tianming Zhu, and Jin-Ting Zhang.(2020) <doi:10.1016/j.ecosta.2019.12.002>; Zhang, Liang, Tianming Zhu, and Jin-Ting Zhang.(2023) <doi:10.1080/02664763.2020.1834516>; Zhang, Jin-Ting, and Tianming Zhu.(2022) <doi:10.1080/10485252.2021.2015768>; Zhang, Jin-Ting, and Tianming Zhu.(2022) <doi:10.1007/s42519-021-00232-w>; Zhu, Tianming, Pengfei Wang, and Jin-Ting Zhang.(2023) <doi:10.1007/s00180-023-01433-6>]. Some existing tests for GLHT problem [see Fujikoshi, Yasunori, Tetsuto Himeno, and Hirofumi Wakaki.(2004) <doi:10.14490/jjss.34.19>; Srivastava, Muni S., and Yasunori Fujikoshi.(2006) <doi:10.1016/j.jmva.2005.08.010>; Yamada, Takayuki, and Muni S. Srivastava.(2012) <doi:10.1080/03610926.2011.581786>; Schott, James R.(2007) <doi:10.1016/j.jmva.2006.11.007>; Zhou, Bu, Jia Guo, and Jin-Ting Zhang.(2017) <doi:10.1016/j.jspi.2017.03.005>]. Normal-reference tests for GLHT problem [see Zhang, Jin-Ting, Jia Guo, and Bu Zhou.(2017) <doi:10.1016/j.jmva.2017.01.002>; Zhang, Jin-Ting, Bu Zhou, and Jia Guo.(2022) <doi:10.1016/j.jmva.2021.104816>; Zhu, Tianming, Liang Zhang, and Jin-Ting Zhang.(2022) <doi:10.5705/ss.202020.0362>; Zhu, Tianming, and Jin-Ting Zhang.(2022) <doi:10.1007/s00180-021-01110-6>; Zhang, Jin-Ting, and Tianming Zhu.(2022) <doi:10.1016/j.csda.2021.107385>].