Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Bipartite graph-based hierarchical clustering, developed for pharmacogenomic datasets and datasets sharing the same data structure. The goal is to construct a hierarchical clustering of groups of samples based on association patterns between two sets of variables. In the context of pharmacogenomic datasets, the samples are cell lines, and the two sets of variables are typically expression levels and drug sensitivity values. For this method, sparse canonical correlation analysis from Lee, W., Lee, D., Lee, Y. and Pawitan, Y. (2011) <doi:10.2202/1544-6115.1638> is first applied to extract association patterns for each group of samples. Then, a nuclear norm-based dissimilarity measure is used to construct a dissimilarity matrix between groups based on the extracted associations. Finally, hierarchical clustering is applied.
Create publication-quality, 2-dimensional visualizations of alpha-helical peptide sequences. Specifically, allows the user to programmatically generate helical wheels and wenxiang diagrams to provide a bird's eye, top-down view of alpha-helical oligopeptides. See Wadhwa RR, et al. (2018) <doi:10.21105/joss.01008> for more information.
H3 is a hexagonal hierarchical spatial index developed by Uber <https://h3geo.org/>. This package exposes the source code of H3 (written in C') to routines that are callable through R'.
Efficient Bayesian multinomial logistic regression based on heavy-tailed (hyper-LASSO, non-convex) priors. The posterior of coefficients and hyper-parameters is sampled with restricted Gibbs sampling for leveraging the high-dimensionality and Hamiltonian Monte Carlo for handling the high-correlation among coefficients. A detailed description of the method: Li and Yao (2018), Journal of Statistical Computation and Simulation, 88:14, 2827-2851, <doi:10.48550/arXiv.1405.3319>.
Monthly median home listing, sale price per square foot, and number of units sold for 2984 counties in the contiguous United States From 2008 to January 2016. Additional data sets containing geographical information and links to Wikipedia are also included.
It performs maximum likelihood estimation for the Heckman selection model (Normal, Student-t or Contaminated normal) using an EM-algorithm <doi:10.1016/j.jmva.2021.104737>. It also performs influence diagnostic through global and local influence for four possible perturbation schema.
This package contains most of the hex font files from the GNU Unifont Project <https://unifoundry.com/unifont/> compressed by xz'. GNU Unifont is a duospaced bitmap font that attempts to cover all the official Unicode glyphs plus several of the artificial scripts in the (Under-)ConScript Unicode Registry <https://www.kreativekorp.com/ucsur/>. Provides a convenience function for loading in several of them at the same time as a bittermelon bitmap font object for easy rendering of the glyphs in an R terminal or graphics device.
The presence of outliers in a dataset can substantially bias the results of statistical analyses. To correct for outliers, micro edits are manually performed on all records. A set of constraints and decision rules is typically used to aid the editing process. However, straightforward decision rules might overlook anomalies arising from disruption of linear relationships. Computationally efficient methods are provided to identify historical, tail, and relational anomalies at the data-entry level (Sartore et al., 2024; <doi:10.6339/24-JDS1136>). A score statistic is developed for each anomaly type, using a distribution-free approach motivated by the Bienaymé-Chebyshev's inequality, and fuzzy logic is used to detect cellwise outliers resulting from different types of anomalies. Each data entry is individually scored and individual scores are combined into a final score to determine anomalous entries. In contrast to fuzzy logic, Bayesian bootstrap and a Bayesian test based on empirical likelihoods are also provided as studied by Sartore et al. (2024; <doi:10.3390/stats7040073>). These algorithms allow for a more nuanced approach to outlier detection, as it can identify outliers at data-entry level which are not obviously distinct from the rest of the data. --- This research was supported in part by the U.S. Department of Agriculture, National Agriculture Statistics Service. The findings and conclusions in this publication are those of the authors and should not be construed to represent any official USDA, or US Government determination or policy.
Human names are complicated and nonstandard things. Humaniformat, which is based on Anthony Ettinger's humanparser project (https://github.com/ chovy/humanparser) provides functions for parsing human names, making a best- guess attempt to distinguish sub-components such as prefixes, suffixes, middle names and salutations.
This package provides a collection of datasets of human-computer interaction (HCI) experiments. Each dataset is from an HCI paper, with all fields described and the original publication linked. All paper authors of included data have consented to the inclusion of their data in this package. The datasets include data from a range of HCI studies, such as pointing tasks, user experience ratings, and steering tasks. Dataset sources: Bergström et al. (2022) <doi:10.1145/3490493>; Dalsgaard et al. (2021) <doi:10.1145/3489849.3489853>; Larsen et al. (2019) <doi:10.1145/3338286.3340115>; Lilija et al. (2019) <doi:10.1145/3290605.3300676>; Pohl and Murray-Smith (2013) <doi:10.1145/2470654.2481307>; Pohl and Mottelson (2022) <doi:10.3389/frvir.2022.719506>.
Calculate taxonomic, functional and phylogenetic diversity measures through Hill Numbers proposed by Chao, Chiu and Jost (2014) <doi:10.1146/annurev-ecolsys-120213-091540>.
We provide functions for identifying the core community phylogeny in any microbiome, drawing phylogenetic Venn diagrams, calculating the core Faithâ s PD for a set of communities, and calculating the core UniFrac distance between two sets of communities. All functions rely on construction of a core community phylogeny, which is a phylogeny where branches are defined based on their presence in multiple samples from a single type of habitat. Our package provides two options for constructing the core community phylogeny, a tip-based approach, where the core community phylogeny is identified based on incidence of leaf nodes and a branch-based approach, where the core community phylogeny is identified based on incidence of individual branches. We suggest use of the microViz package.
This package implements various heuristics like Take The Best and unit-weight linear, which do two-alternative choice: which of two objects will have a higher criterion? Also offers functions to assess performance, e.g. percent correct across all row pairs in a data set and finding row pairs where models disagree. New models can be added by implementing a fit and predict function-- see vignette. Take The Best was first described in: Gigerenzer, G. & Goldstein, D. G. (1996) <doi:10.1037/0033-295X.103.4.650>. All of these heuristics were run on many data sets and analyzed in: Gigerenzer, G., Todd, P. M., & the ABC Group (1999). <ISBN:978-0195143812>.
This package provides a multiple-testing procedure for high-dimensional mediation hypotheses. Mediation analysis is of rising interest in epidemiology and clinical trials. Among existing methods for mediation analyses, the popular joint significance (JS) test yields an overly conservative type I error rate and therefore low power. In the R package HDMT we implement a multiple-testing procedure that accurately controls the family-wise error rate (FWER) and the false discovery rate (FDR) when using JS for testing high-dimensional mediation hypotheses. The core of our procedure is based on estimating the proportions of three component null hypotheses and deriving the corresponding mixture distribution of null p-values. Results of the data examples include better-behaved quantile-quantile plots and improved detection of novel mediation relationships on the role of DNA methylation in genetic regulation of gene expression. With increasing interest in mediation by molecular intermediaries such as gene expression, the proposed method addresses an unmet methodological challenge. Methods used in the package refer to James Y. Dai, Janet L. Stanford & Michael LeBlanc (2020) <doi:10.1080/01621459.2020.1765785>.
Initializes a class that obtains API credentials and provides a method to use those credentials to make GET requests to the Hakai API server. Usage instructions are documented at <https://hakaiinstitute.github.io/hakai-api/>.
H-index and h-alpha are a bibliometric indicators. This package provides functions to simulate how these indicators may develop over time for a given set of researchers and to visualize the simulation data. The implementation is based on the STATA ado h-index and is described in more detail in Bornmann et al. (2019) <arXiv:1905.11052>.
Utilities for reading data from the Human Mortality Database (<https://www.mortality.org>), Human Fertility Database (<https://www.humanfertility.org>), and similar databases from the web or locally into an R session as data.frame objects. These are the two most widely used sources of demographic data to study basic demographic change, trends, and develop new demographic methods. Other supported databases at this time include the Human Fertility Collection (<https://www.fertilitydata.org>), The Japanese Mortality Database (<https://www.ipss.go.jp/p-toukei/JMD/index-en.html>), and the Canadian Human Mortality Database (<http://www.bdlc.umontreal.ca/chmd/>). Arguments and data are standardized.
Haplotype and covariate relative risks in case-control data are estimated by weighted logistic regression. Diplotype probabilities, which are estimated by EM computation with progressive insertion of loci, are utilized as weights. French et al. (2006) <doi:10.1002/gepi.20161>.
Converts among many citation formats, including BibTeX', Citeproc', Codemeta', RDF XML', RIS', Schema.org', and Citation File Format'. A low level R6 class is provided, as well as stand-alone functions for each citation format for both read and write.
Enhances the H2O platform by providing tools for detailed evaluation of machine learning models. It includes functions for bootstrapped performance evaluation, extended F-score calculations, and various other metrics, aimed at improving model assessment.
An implementation of Random Forest-based two-sample tests as introduced in Hediger & Michel & Naef (2022).
The package allows to simulate Hawkes process both in univariate and multivariate settings. It gives functions to compute different moments of the number of jumps of the process on a given interval, such as mean, variance or autocorrelation of process jumps on time intervals separated by a lag.
This package implements the Brakerski-Fan-Vercauteren (BFV, 2012) <https://eprint.iacr.org/2012/144>, Brakerski-Gentry-Vaikuntanathan (BGV, 2014) <doi:10.1145/2633600>, and Cheon-Kim-Kim-Song (CKKS, 2016) <https://eprint.iacr.org/2016/421.pdf> schema for Fully Homomorphic Encryption. The included vignettes demonstrate the encryption procedures.
Distribution free heteroscedastic tests for functional data. The following tests are included in this package: test of no main treatment or contrast effect and no simple treatment effect given in Wang, Higgins, and Blasi (2010) <doi:10.1016/j.spl.2009.11.016>, no main time effect, and no interaction effect based on original observations given in Wang and Akritas (2010a) <doi:10.1080/10485250903171621> and tests based on ranks given in Wang and Akritas (2010b) <doi:10.1016/j.jmva.2010.03.012>.