Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
By binding R functions and the Highcharts <http://www.highcharts.com/> charting library, hpackedbubble package provides a simple way to draw split packed bubble charts.
This package implements the sample size methods for hierarchical 2x2 factorial trials under two choices of effect estimands and a series of hypothesis tests proposed in "Sample size calculation in hierarchical 2x2 factorial trials with unequal cluster sizes" (under review), and provides the table and plot generators for the sample size estimations.
This package provides a set of objects and functions for Bayes Linear emulation and history matching. Core functionality includes automated training of emulators to data, diagnostic functions to ensure suitability, and a variety of proposal methods for generating waves of points. For details on the mathematical background, there are many papers available on the topic (see references attached to function help files or the below references); for details of the functions in this package, consult the manual or help files. Iskauskas, A, et al. (2024) <doi:10.18637/jss.v109.i10>. Bower, R.G., Goldstein, M., and Vernon, I. (2010) <doi:10.1214/10-BA524>. Craig, P.S., Goldstein, M., Seheult, A.H., and Smith, J.A. (1997) <doi:10.1007/978-1-4612-2290-3_2>.
Wrapper for Stan that offers a number of in-built models to implement a hierarchical Bayesian longitudinal model for repeat observation data. Model choice selects the differential equation that is fit to the observations. Single and multi-individual models are available. O'Brien et al. (2024) <doi:10.1111/2041-210X.14463>.
Provide functions to make estimate the number of states for a hidden Markov model (HMM) using marginal likelihood method proposed by the authors. See the Manual.pdf file a detail description of all functions, and a detail tutorial.
Quantifying similarity between high-dimensional single cell samples is challenging, and usually requires some simplifying hypothesis to be made. By transforming the high dimensional space into a high dimensional grid, the number of cells in each sub-space of the grid is characteristic of a given sample. Using a Hilbert curve each sample can be visualized as a simple density plot, and the distance between samples can be calculated from the distribution of cells using the Jensen-Shannon distance. Bins that correspond to significant differences between samples can identified using a simple bootstrap procedure.
An implementation of the modelling and reporting features described in reference textbook and guidelines (Briggs, Andrew, et al. Decision Modelling for Health Economic Evaluation. Oxford Univ. Press, 2011; Siebert, U. et al. State-Transition Modeling. Medical Decision Making 32, 690-700 (2012).): deterministic and probabilistic sensitivity analysis, heterogeneity analysis, time dependency on state-time and model-time (semi-Markov and non-homogeneous Markov models), etc.
This package contains the National Health and Nutrition Examination Survey 24-hour dietary recall data and Healthy Eating Index scoring standards used by the heiscore package.
This package provides a function to assess and test for heterogeneity in the utility of a surrogate marker with respect to a baseline covariate. The main function can be used for either a continuous or discrete baseline covariate. More details will be available in the future in: Parast, L., Cai, T., Tian L (2021). "Testing for Heterogeneity in the Utility of a Surrogate Marker." Biometrics, In press.
General (multi-allelic) Hardy-Weinberg equilibrium problem from an objective Bayesian testing standpoint. This aim is achieved through the identification of a class of priors specifically designed for this testing problem. A class of intrinsic priors under the full model is considered. This class is indexed by a tuning quantity, the training sample size, as discussed in Consonni, Moreno and Venturini (2010). These priors are objective, satisfy Savage's continuity condition and have proved to behave extremely well for many statistical testing problems.
Enhance package testthat by allowing tests to be attached to the function/object they test. This allows to keep functional and unit test code together.
This package provides functions for basic hydraulic calculations related to water flow in circular pipes both flowing full (under pressure), and partially full (gravity flow), and trapezoidal open channels. For pressure flow this includes friction loss calculations by solving the Darcy-Weisbach equation for head loss, flow or diameter, plotting a Moody diagram, matching a pump characteristic curve to a system curve, and solving for flows in a pipe network using the Hardy-Cross method. The Darcy-Weisbach friction factor is calculated using the Colebrook (or Colebrook-White equation), the basis of the Moody diagram, the original citation being Colebrook (1939) <doi:10.1680/ijoti.1939.13150>. For gravity flow, the Manning equation is used, again solving for missing parameters. The derivation of and solutions using the Darcy-Weisbach equation and the Manning equation are outlined in many fluid mechanics texts such as Finnemore and Maurer (2024, ISBN:978-1-264-78729-6). Some gradually- and rapidly-varied flow functions are included. For the Manning equation solutions, this package uses modifications of original code from the iemisc package by Irucka Embry.
Tests for two high-dimensional population mean vectors. The user has the option to compute the asymptotic, the permutation or the bootstrap based p-value of the test. Some references are: Chen S.X. and Qin Y.L. (2010). <doi:10.1214/09-AOS716>, Cai T.T., Liu W., and Xia Y. (2014) <doi:10.1111/rssb.12034> and Yu X., Li D., Xue L. and Li, R. (2023) <doi:10.1080/01621459.2022.2061354>.
Several procedures for the hierarchical kernel extreme value process of Reich and Shaby (2012) <DOI:10.1214/12-AOAS591>, including simulation, estimation and spatial extrapolation. The spatial latent variable model <DOI:10.1214/11-STS376> is also included.
S3 functions implementing both statistical and graphical goodness-of-fit measures between observed and simulated values, mainly oriented to be used during the calibration, validation, and application of hydrological models. Missing values in observed and/or simulated values can be removed before computations. Comments / questions / collaboration of any kind are very welcomed.
Fitting hidden Markov models using automatic differentiation and Laplace approximation, allowing for fast inference and flexible covariate effects (including random effects and smoothing splines) on model parameters. The package is described by Michelot (2025) <doi:10.18637/jss.v114.i05>.
Calculates a suite of hydrologic indices for daily time series data that are widely used in hydrology and stream ecology.
This package provides a suite of diagnostic tools for hierarchical (multilevel) linear models. The tools include not only leverage and traditional deletion diagnostics (Cook's distance, covratio, covtrace, and MDFFITS) but also convenience functions and graphics for residual analysis. Models can be fit using either lmer in the lme4 package or lme in the nlme package.
It is used to travel graphs, by using DFS and BFS to get the path from node to each leaf node. Depth first traversal(DFS) is a recursive algorithm for searching all the vertices of a graph or tree data structure. Traversal means visiting all the nodes of a graph. Breadth first traversal(BFS) algorithm is used to search a tree or graph data structure for a node that meets a set of criteria. It starts at the treeâ s root or graph and searches/visits all nodes at the current depth level before moving on to the nodes at the next depth level. Also, it provides the matrix which is reachable between each node. Implement reference about Baruch Awerbuch (1985) <doi:10.1016/0020-0190(85)90083-3>.
Harmony is a tool using AI which allows you to compare items from questionnaires and identify similar content. You can try Harmony at <https://harmonydata.ac.uk/app/> and you can read our blog at <https://harmonydata.ac.uk/blog/> or at <https://fastdatascience.com/how-does-harmony-work/>. Documentation at <https://harmonydata.ac.uk/harmony-r-released/>.
This package provides a set of routines to quickly download and import the HUGO Gene Nomenclature Committee (HGNC) data set on mapping of gene symbols to gene entries in other genomic databases or resources.
This code provides a method to fit the hidden compact representation model as well as to identify the causal direction on discrete data. We implement an effective solution to recover the above hidden compact representation under the likelihood framework. Please see the Causal Discovery from Discrete Data using Hidden Compact Representation from NIPS 2018 by Ruichu Cai, Jie Qiao, Kun Zhang, Zhenjie Zhang and Zhifeng Hao (2018) <https://nips.cc/Conferences/2018/Schedule?showEvent=11274> for a description of some of our methods.
Creating effective colour palettes for figures is challenging. This package generates and plot palettes of optimally distinct colours in perceptually uniform colour space, based on iwanthue <http://tools.medialab.sciences-po.fr/iwanthue/>. This is done through k-means clustering of CIE Lab colour space, according to user-selected constraints on hue, chroma, and lightness.
This package provides functions for combining model outputs (e.g. predictions or estimates) from multiple models into an aggregated ensemble model output.