Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Cellular responses to perturbations are highly heterogeneous and depend largely on the initial state of cells. Connecting post-perturbation cells via cellular trajectories to untreated cells (e.g. by leveraging metabolic labeling information) enables exploitation of intercellular heterogeneity as a combined knock-down and overexpression screen to identify pathway modulators, termed Heterogeneity-seq (see Berg et al <doi:10.1101/2024.10.28.620481>). This package contains functions to generate cellular trajectories based on scSLAM-seq (single-cell, thiol-(SH)-linked alkylation of RNA for metabolic labelling sequencing) time courses, functions to identify pathway modulators and to visualize the results.
Provide functionality to manage, clean and match highfrequency trades and quotes data, calculate various liquidity measures, estimate and forecast volatility, detect price jumps and investigate microstructure noise and intraday periodicity. A detailed vignette can be found in the open-access paper "Analyzing Intraday Financial Data in R: The highfrequency Package" by Boudt, Kleen, and Sjoerup (2022, <doi:10.18637/jss.v104.i08>).
Probabilistic models describing the behavior of workload and queue on a High Performance Cluster and computing GRID under FIFO service discipline basing on modified Kiefer-Wolfowitz recursion. Also sample data for inter-arrival times, service times, number of cores per task and waiting times of HPC of Karelian Research Centre are included, measurements took place from 06/03/2009 to 02/30/2011. Functions provided to import/export workload traces in Standard Workload Format (swf). Stability condition of the model may be verified either exactly, or approximately. Stability analysis: see Rumyantsev and Morozov (2017) <doi:10.1007/s10479-015-1917-2>, workload recursion: see Rumyantsev (2014) <doi:10.1109/PDCAT.2014.36>.
Estimates the shape and volume of high-dimensional datasets and performs set operations: intersection / overlap, union, unique components, inclusion test, and hole detection. Uses stochastic geometry approach to high-dimensional kernel density estimation, support vector machine delineation, and convex hull generation. Applications include modeling trait and niche hypervolumes and species distribution modeling.
Fits sparse interaction models for continuous and binary responses subject to the strong (or weak) hierarchy restriction that an interaction between two variables only be included if both (or at least one of) the variables is included as a main effect. For more details, see Bien, J., Taylor, J., Tibshirani, R., (2013) "A Lasso for Hierarchical Interactions." Annals of Statistics. 41(3). 1111-1141.
Sets up and executes a HiSSE model (Hidden State Speciation and Extinction) on a phylogeny and character sets to test for hidden shifts in trait dependent rates of diversification. Beaulieu and O'Meara (2016) <doi:10.1093/sysbio/syw022>.
These sample data sets are intended for historians learning R. They include population, institutional, religious, military, and prosopographical data suitable for mapping, quantitative analysis, and network analysis.
This package provides a two-step double-robust method to estimate the conditional average treatment effects (CATE) with potentially high-dimensional covariate(s). In the first stage, the nuisance functions necessary for identifying CATE are estimated by machine learning methods, allowing the number of covariates to be comparable to or larger than the sample size. The second stage consists of a low-dimensional local linear regression, reducing CATE to a function of the covariate(s) of interest. The CATE estimator implemented in this package not only allows for high-dimensional data, but also has the â double robustnessâ property: either the model for the propensity score or the models for the conditional means of the potential outcomes are allowed to be misspecified (but not both). This package is based on the paper by Fan et al., "Estimation of Conditional Average Treatment Effects With High-Dimensional Data" (2022), Journal of Business & Economic Statistics <doi:10.1080/07350015.2020.1811102>.
This package provides a set of routines to quickly download and import the HUGO Gene Nomenclature Committee (HGNC) data set on mapping of gene symbols to gene entries in other genomic databases or resources.
Creating effective colour palettes for figures is challenging. This package generates and plot palettes of optimally distinct colours in perceptually uniform colour space, based on iwanthue <http://tools.medialab.sciences-po.fr/iwanthue/>. This is done through k-means clustering of CIE Lab colour space, according to user-selected constraints on hue, chroma, and lightness.
Simple and integrated tool that automatically extracts and folds all hairpin sequences from raw genome-wide data. It predicts the secondary structure of several overlapped segments, with longer length than the mean length of sequences of interest for the species under processing, ensuring that no one is lost nor inappropriately cut.
Fitting hidden Markov models using automatic differentiation and Laplace approximation, allowing for fast inference and flexible covariate effects (including random effects and smoothing splines) on model parameters. The package is described by Michelot (2025) <doi:10.18637/jss.v114.i05>.
Calculates a suite of hydrologic indices for daily time series data that are widely used in hydrology and stream ecology.
Health Calculator helps to find different parameters like basal metabolic rate, body mass index etc. related to fitness and health of a person.
An algorithm for flexible conditional density estimation based on application of pooled hazard regression to an artificial repeated measures dataset constructed by discretizing the support of the outcome variable. To facilitate flexible estimation of the conditional density, the highly adaptive lasso, a non-parametric regression function shown to estimate cadlag (RCLL) functions at a suitably fast convergence rate, is used. The use of pooled hazards regression for conditional density estimation as implemented here was first described for by DÃ az and van der Laan (2011) <doi:10.2202/1557-4679.1356>. Building on the conditional density estimation utilities, non-parametric inverse probability weighted (IPW) estimators of the causal effects of additive modified treatment policies are implemented, using conditional density estimation to estimate the generalized propensity score. Non-parametric IPW estimators based on this can be coupled with undersmoothing of the generalized propensity score estimator to attain the semi-parametric efficiency bound (per Hejazi, DÃ az, and van der Laan <doi:10.48550/arXiv.2205.05777>).
Facilitates the analysis and evaluation of hydrologic model output and time-series data with functions focused on comparison of modeled (simulated) and observed data, period-of-record statistics, and trends.
This package provides utility functions that are simply, frequently used, but may require higher performance that what can be obtained from base R. Incidentally provides support for reverse geocoding', such as matching a point with its nearest neighbour in another array. Used as a complement to package hutils by sacrificing compilation or installation time for higher running speeds. The name is a portmanteau of the author and Rcpp'.
Estimation procedures and goodness-of-fit test for several Markov regime switching models and mixtures of bivariate copula models. The goodness-of-fit test is based on a Cramer-von Mises statistic and uses Rosenblatt's transform and parametric bootstrap to estimate the p-value. The proposed methodologies are described in Nasri, Remillard and Thioub (2020) <doi:10.1002/cjs.11534>.
The HBV hydrological model (Bergström, S. and Lindström, G., (2015) <doi:10.1002/hyp.10510>) has been split in modules to allow the user to build his/her own model. This version was developed by the author in IANIGLA-CONICET (Instituto Argentino de Nivologia, Glaciologia y Ciencias Ambientales - Consejo Nacional de Investigaciones Cientificas y Tecnicas) for hydroclimatic studies in the Andes. HBV.IANIGLA incorporates routines for clean and debris covered glacier melt simulations.
This package contains functions for fitting hierarchical versions of EVSD, UVSD, DPSD, DPSD with d restricted to be positive, and our gamma signal detection model to recognition memory confidence-ratings data.
Linear and logistic regression models penalized with hierarchical shrinkage priors for selection of biomarkers (or more general variable selection), which can be fitted using Stan (Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>). It implements the horseshoe and regularized horseshoe priors (Piironen and Vehtari (2017) <doi:10.1214/17-EJS1337SI>), as well as the projection predictive selection approach to recover a sparse set of predictive biomarkers (Piironen, Paasiniemi and Vehtari (2020) <doi:10.1214/20-EJS1711>).
Allows for painless use of the Metopio health atlas APIs <https://metopio.com/health-atlas> to explore and import data. Metopio health atlases store open public health data. See what topics (or indicators) are available among specific populations, periods, and geographic layers. Download relevant data along with geographic boundaries or point datasets. Spatial datasets are returned as sf objects.
This package provides functions and methods for organizing data in hypercubes (i.e., a multi-dimensional cube). Cubes are generated from molten data frames. Each cube can be manipulated with five operations: rotation (change.dimensionOrder()), dicing and slicing (add.selection(), remove.selection()), drilling down (add.aggregation()), and rolling up (remove.aggregation()).
Simple tools for converting columns to new data types. Intuitive functions for columns with missing values.