Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Allows users to create time series of tropical storm exposure histories for chosen counties for a number of hazard metrics (wind, rain, distance from the storm, etc.). This package interacts with data available through the hurricaneexposuredata package, which is available in a drat repository. To access this data package, see the instructions at <https://github.com/geanders/hurricaneexposure>. The size of the hurricaneexposuredata package is approximately 20 MB. This work was supported in part by grants from the National Institute of Environmental Health Sciences (R00ES022631), the National Science Foundation (1331399), and a NASA Applied Sciences Program/Public Health Program Grant (NNX09AV81G).
Perform statistical writership analysis of scanned handwritten documents with a shiny app for handwriter'.
This package provides a dependency free interface to the H3 geospatial indexing system utilizing the Rust library h3o <https://github.com/HydroniumLabs/h3o> via the extendr library <https://github.com/extendr/extendr>.
Constructs shrinkage estimators of high-dimensional mean-variance portfolios and performs high-dimensional tests on optimality of a given portfolio. The techniques developed in Bodnar et al. (2018 <doi:10.1016/j.ejor.2017.09.028>, 2019 <doi:10.1109/TSP.2019.2929964>, 2020 <doi:10.1109/TSP.2020.3037369>, 2021 <doi:10.1080/07350015.2021.2004897>) are central to the package. They provide simple and feasible estimators and tests for optimal portfolio weights, which are applicable for large p and large n situations where p is the portfolio dimension (number of stocks) and n is the sample size. The package also includes tools for constructing portfolios based on shrinkage estimators of the mean vector and covariance matrix as well as a new Bayesian estimator for the Markowitz efficient frontier recently developed by Bauder et al. (2021) <doi:10.1080/14697688.2020.1748214>.
High level functions for hyperplane fitting (hyper.fit()) and visualising (hyper.plot2d() / hyper.plot3d()). In simple terms this allows the user to produce robust 1D linear fits for 2D x vs y type data, and robust 2D plane fits to 3D x vs y vs z type data. This hyperplane fitting works generically for any N-1 hyperplane model being fit to a N dimension dataset. All fits include intrinsic scatter in the generative model orthogonal to the hyperplane.
This package provides a broad collection of datasets focused on health, biomechanics, and human motion. It includes clinical, physiological, and kinematic information from diverse sources, covering aspects such as surgery outcomes, vital signs, rheumatoid arthritis, osteoarthritis, accelerometry, gait analysis, motion sensing, and biomechanics experiments. Designed for researchers, analysts, and students, the package facilitates exploration and analysis of data related to health monitoring, physical activity, and rehabilitation.
Allows users to create high-quality heatmaps from labelled, hierarchical data. Specifically, for data with a two-level hierarchical structure, it will produce a heatmap where each row and column represents a category at the lower level. These rows and columns are then grouped by the higher-level group each category belongs to, with the names for each category and groups shown in the margins. While other packages (e.g. dendextend') allow heatmap rows and columns to be arranged by groups only, hhmR also allows the labelling of the data at both the category and group level.
Computation of generalized hypergeometric function with tunable high precision in a vectorized manner, with the floating-point datatypes from mpfr or gmp library. The computation is limited to real numbers.
This package implements an estimation method for Hawkes processes when count data are only observed in discrete time, using a spectral approach derived from the Bartlett spectrum, see Cheysson and Lang (2020) <arXiv:2003.04314>. Some general use functions for Hawkes processes are also included: simulation of (in)homogeneous Hawkes process, maximum likelihood estimation, residual analysis, etc.
Datasets related to Hong Kong, including information on the 2019 elected District Councillors (<https://www.districtcouncils.gov.hk> and <https://dce2019.hk01.com/>) and traffic collision data from the Hong Kong Department of Transport (<https://www.td.gov.hk/>). All of the data in this package is available in the public domain.
Using Dirichlet-Multinomial distribution to provide several functions for formal hypothesis testing, power and sample size calculations for human microbiome experiments.
Implementation of a class of hierarchical item response theory (IRT) models where both the mean and the variance of latent preferences (ability parameters) may depend on observed covariates. The current implementation includes both the two-parameter latent trait model for binary data and the graded response model for ordinal data. Both are fitted via the Expectation-Maximization (EM) algorithm. Asymptotic standard errors are derived from the observed information matrix.
Various functions and algorithms are provided here for solving optimal matching tasks in the context of preclinical cancer studies. Further, various helper and plotting functions are provided for unsupervised and supervised machine learning as well as longitudinal mixed-effects modeling of tumor growth response patterns.
Set of tools to help interested researchers to build hospital networks from data on hospitalized patients transferred between hospitals. Methods provided have been used in Donker T, Wallinga J, Grundmann H. (2010) <doi:10.1371/journal.pcbi.1000715>, and Nekkab N, Crépey P, Astagneau P, Opatowski L, Temime L. (2020) <doi:10.1038/s41598-020-71212-6>.
This package implements hierarchically regularized entropy balancing proposed by Xu and Yang (2022) <doi:10.1017/pan.2022.12>. The method adjusts the covariate distributions of the control group to match those of the treatment group. hbal automatically expands the covariate space to include higher order terms and uses cross-validation to select variable penalties for the balancing conditions.
Use the Official Hacker News API through R. Retrieve posts, articles and other items in form of convenient R objects.
Estimates frictional constants for hydraulic analysis of rivers. This HYDRaulic ROughness CALculator (HYDROCAL) was previously developed as a spreadsheet tool and accompanying documentation by McKay and Fischenich (2011, <https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/2034/1/CHETN-VII-11.pdf>).
Using hybrid data, this package created a vividly colored hybrid heat map. The input is two files which are auto-selected. The first file has three columns, the first two for pairs of species, with the third column for the hybrid experiment code (an integer). The second file is a list of code and their descriptions in two columns. The output is a figure showing the hybrid heat map with a color legend.
Build better balance in causal inference models. halfmoon helps you assess propensity score models for balance between groups using metrics like standardized mean differences and visualization techniques like mirrored histograms. halfmoon supports both weighting and matching techniques.
This package provides functions for processing, analysis and visualization of Hydrogen Deuterium eXchange monitored by Mass Spectrometry experiments (HDX-MS) (<doi:10.1093/bioinformatics/btaa587>). HaDeX introduces a new standardized and reproducible workflow for the analysis of the HDX-MS data, including novel uncertainty intervals. Additionally, it covers data exploration, quality control and generation of publication-quality figures. All functionalities are also available in the in-built Shiny app.
Estimation procedures and goodness-of-fit test for several Markov regime switching models and mixtures of bivariate copula models. The goodness-of-fit test is based on a Cramer-von Mises statistic and uses Rosenblatt's transform and parametric bootstrap to estimate the p-value. The proposed methodologies are described in Nasri, Remillard and Thioub (2020) <doi:10.1002/cjs.11534>.
Develops algorithms for fitting, prediction, simulation and initialization of the following models (1)- hidden hybrid Markov/semi-Markov model, introduced by Guedon (2005) <doi:10.1016/j.csda.2004.05.033>, (2)- nonparametric mixture of B-splines emissions (Langrock et al., 2015 <doi:10.1111/biom.12282>), (3)- regime switching regression model (Kim et al., 2008 <doi:10.1016/j.jeconom.2007.10.002>) and auto-regressive hidden hybrid Markov/semi-Markov model, (4)- spline-based nonparametric estimation of additive state-switching models (Langrock et al., 2018 <doi:10.1111/stan.12133>) (5)- robust emission model proposed by Qin et al, 2024 <doi:10.1007/s10479-024-05989-4> (6)- several emission distributions, including mixture of multivariate normal (which can also handle missing data using EM algorithm) and multi-nomial emission (for modeling polymer or DNA sequences) (7)- tools for prediction of future state sequence, computing the score of a new sequence, splitting the samples and sequences to train and test sets, computing the information measures of the models, computing the residual useful lifetime (reliability) and many other useful tools ... (read for more description: Amini et al., 2022 <doi:10.1007/s00180-022-01248-x> and its arxiv version: <doi:10.48550/arXiv.2109.12489>).
In streaming data analysis, it is crucial to detect significant shifts in the data distribution or the accuracy of predictive models over time, a phenomenon known as concept drift. The package aims to identify when concept drift occurs and provide methodologies for adapting models in non-stationary environments. It offers a range of state-of-the-art techniques for detecting concept drift and maintaining model performance. Additionally, the package provides tools for adapting models in response to these changes, ensuring continuous and accurate predictions in dynamic contexts. Methods for concept drift detection are described in Tavares (2022) <doi:10.1007/s12530-021-09415-z>.
Simple and integrated tool that automatically extracts and folds all hairpin sequences from raw genome-wide data. It predicts the secondary structure of several overlapped segments, with longer length than the mean length of sequences of interest for the species under processing, ensuring that no one is lost nor inappropriately cut.