Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Facilitates fitting measurement error and missing data imputation models using integrated nested Laplace approximations, according to the method described in Skarstein, Martino and Muff (2023) <doi:10.1002/bimj.202300078>. See Skarstein and Muff (2024) <doi:10.48550/arXiv.2406.08172> for details on using the package.
The initial basic feasible solution (IBFS) is a significant step to achieve the minimal total cost (optimal solution) of the transportation problem. However, the existing methods of IBFS do not always provide a good feasible solution which can reduce the number of iterations to find the optimal solution. This initial basic feasible solution can be obtained by using any of the following methods. a) North West Corner Method. b) Least Cost Method. c) Row Minimum Method. d) Column Minimum Method. e) Vogel's Approximation Method. etc. For more technical details about the algorithms please refer below URLs. <https://theintactone.com/2018/05/24/ds-u2-topic-8-transportation-problems-initial-basic-feasible-solution/>. <https://www.brainkart.com/article/Methods-of-finding-initial-Basic-Feasible-Solutions_39037/>. <https://myhomeworkhelp.com/row-minima-method/>. <https://myhomeworkhelp.com/column-minima-method/>.
These are data and functions to support quantitative peace science research. The data are important state-year information on democracy and wealth, which require periodic updates and regular maintenance. The functions permit some exploratory and diagnostic assessment of the kinds of data in demand by the community, but do not impose many dependencies on the user.
This package provides fast application of image filters to data matrices, using R and C++ algorithms.
R dependency injection framework. Dependency injection allows a program design to follow the dependency inversion principle. The user delegates to external code (the injector) the responsibility of providing its dependencies. This separates the responsibilities of use and construction.
Electricity is not made equal and it vary in its carbon footprint (or carbon intensity) depending on its source. This package enables to access and query data provided by the Carbon Intensity API (<https://carbonintensity.org.uk/>). National Gridâ s Carbon Intensity API provides an indicative trend of regional carbon intensity of the electricity system in Great Britain.
Calculates event rates and compares means and variances of groups of interval data corrected for missed arrival observations.
This package provides functions to import and handle infrared spectra (import from .csv and Thermo Galactic's .spc', baseline correction, binning, clipping, interpolating, smoothing, averaging, adding, subtracting, dividing, multiplying, atmospheric correction, tidyverse methods, plotting).
Parse, trim, join, visualise and analyse data from Itrax sediment core multi-parameter scanners manufactured by Cox Analytical Systems, Sweden. Functions are provided for parsing XRF-peak area files, line-scan optical images, and radiographic images, alongside accompanying metadata. A variety of data wrangling tasks like trimming, joining and reducing XRF-peak area data are simplified. Multivariate methods are implemented with appropriate data transformation.
Computes and tests individual (species, phylogenetic and functional) diversity-area relationships, i.e., how species-, phylogenetic- and functional-diversity varies with spatial scale around the individuals of some species in a community. See applications of these methods in Wiegand et al. (2007) <doi:10.1073/pnas.0705621104> or Chacon-Labella et al. (2016) <doi:10.1007/s00442-016-3547-z>.
This package provides a integrated variance correlation is proposed to measure the dependence between a categorical or continuous random variable and a continuous random variable or vector. This package is designed to estimate the new correlation coefficient with parametric and nonparametric approaches. Test of independence for different problems can also be implemented via the new correlation coefficient with this package.
This package provides a tool to calculate and plot estimates from models in which an interaction between the main predictor and a continuous covariate has been specified. Methods used in the package refer to Harrell Jr FE (2015, ISBN:9783319330396); Durrleman S, Simon R. (1989) <doi:10.1002/sim.4780080504>; Greenland S. (1995) <doi:10.1097/00001648-199507000-00005>.
An implementation of various methods for estimating intrinsic dimension of vector-valued dataset or distance matrix. Most methods implemented are based on different notion of fractal dimension such as the capacity dimension, the box-counting dimension, and the information dimension.
This package provides functions to access real-time infectious disease data from the disease.sh API', including COVID-19 global, US states, continent, and country statistics, vaccination coverage, influenza-like illness data from the Centers for Disease Control and Prevention (CDC), and more. Also includes curated datasets on a variety of infectious diseases such as influenza, measles, dengue, Ebola, tuberculosis, meningitis, AIDS, and others. The package supports epidemiological research and data analysis by combining API access with high-quality historical and survey datasets on infectious diseases. For more details on the disease.sh API', see <https://disease.sh/>.
This package provides a shiny application to assist in phytosanitary inspections. It generates a diagram of pallets in a lot, highlights the units to be sampled, and documents them based on the selected sampling method (simple random or systematic sampling).
Simplifies the generation of customized R Markdown PDF templates. A template may include an individual logo, typography, geometry or color scheme. The package provides a skeleton with detailed instructions for customizations. The skeleton can be modified by changing defaults in the YAML header, by adding additional LaTeX commands or by applying dynamic adjustments in R. Individual corporate design elements, such as a title page, can be added as R functions that produce LaTeX code.
Dichotomous and polytomous data analysis and their scoring using the unidimensional Item Response Theory model (Chalmers (2012) <doi:10.18637/jss.v048.i06>) with user-friendly graphic User Interface. Suitable for beginners who are learning item response theory.
Convenient functions to create ggplot2 graphics following the editorial guidelines of the Institute for Applied Economic Research (Ipea).
Helper functions and example data sets to facilitate the estimation of IRTree models from data with different shape and using different software.
This package implements the Interval Consensus Model (ICM) for analyzing continuous bounded interval-valued responses in psychometrics using Stan for Bayesian estimation. Provides functions for transforming interval data to simplex representations, fitting item response theory (IRT) models with isometric log-ratio (ILR) and sum log-ratio (SLR) link functions, and visualizing results. The package enables aggregation and analysis of interval-valued response data commonly found in psychological measurement and related disciplines. Based on Kloft et al. (2024) <doi:10.31234/osf.io/dzvw2>.
We provide the collection of data-sets used in the book An Introduction to Statistical Learning with Applications in R'.
The goal of image2data is to extract images and return them into a data set, especially for teaching data manipulation and data visualization. Basically, the eponymous function takes an image file ('png', tiff', jpeg', bmp') and turn it into a data set, pixels being rows (subjects) and columns (variables) being their coordinate positions (x- and y-axis) and their respective color (in hex codes). The function can return a complete image or a range of color (i.e., contour, silhouette). The data can then be manipulated as would any data set by either creating other related variables (to hide the image) or as a genuine toy data set.
This package provides functions to help with analysis of longitudinal data featuring irregular observation times, where the observation times may be associated with the outcome process. There are functions to quantify the degree of irregularity, fit inverse-intensity weighted Generalized Estimating Equations (Lin H, Scharfstein DO, Rosenheck RA (2004) <doi:10.1111/j.1467-9868.2004.b5543.x>), perform multiple outputation (Pullenayegum EM (2016) <doi:10.1002/sim.6829>) and fit semi-parametric joint models (Liang Y (2009) <doi: 10.1111/j.1541-0420.2008.01104.x>).
We provide an R tool for teaching in Social Sciences. It allows the computation of index numbers. It is a measure of the evolution of a fixed magnitude for only a product of for several products. It is very useful in Social Sciences. Among others, we obtain simple index numbers (in chain or in serie), index numbers for not only a product or weighted index numbers as the Laspeyres index (Laspeyres, 1864), the Paasche index (Paasche, 1874) or the Fisher index (Lapedes, 1978).