Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides composable invertible transforms for (sparse) matrices.
Select set of parametric and non-parametric statistical tests. inferr builds upon the solid set of statistical tests provided in stats package by including additional data types as inputs, expanding and restructuring the test results. The tests included are t tests, variance tests, proportion tests, chi square tests, Levene's test, McNemar Test, Cochran's Q test and Runs test.
Contain code to work with a C struct, in short cgeneric, to define a Gaussian Markov random (GMRF) model. The cgeneric contain code to specify GMRF elements such as the graph and the precision matrix, and also the initial and prior for its parameters, useful for model inference. It can be accessed from a C program and is the recommended way to implement new GMRF models in the INLA package (<https://www.r-inla.org>). The INLAtools implement functions to evaluate each one of the model specifications from R. The implemented functionalities leverage the use of cgeneric models and provide a way to debug the code as well to work with the prior for the model parameters and to sample from it. A very useful functionality is the Kronecker product method that creates a new model from multiple cgeneric models. It also works with the rgeneric, the R version of the cgeneric intended to easy try implementation of new GMRF models. The Kronecker between two cgeneric models was used in Sterrantino et. al. (2024) <doi:10.1007/s10260-025-00788-y>, and can be used to build the spatio-temporal intrinsic interaction models for what the needed constraints are automatically set.
An efficient and incremental approach for calculating the differences in orbit counts when performing single edge modifications in a network. Calculating the differences in orbit counts is much more efficient than recalculating all orbit counts from scratch for each time point.
This package provides tools for mapping International Classification of Diseases codes to comorbidity, enabling the identification and analysis of various medical conditions within healthcare data.
Currently used CI method has its limitation when the test statistics are asymmetrical (chi-square test, F-test) or the model functions are non-linear. It can be overcome by using the likelihood functions for the interval estimation. inteli package now supports interval estimation for the mean, variance, variance ratio, binomial distribution, Poisson distribution, odds ratio, risk difference, relative risk and their likelihood function plots. Testing functions are also provided.
This package provides a data-driven projection-based method for estimating changepoints in high-dimensional time series. Multiple changepoints are estimated using a (wild) binary segmentation scheme.
Make empirical Bayes incidence curves from reported case data using a specified delay distribution.
This package provides a collection of several utility functions related to binary incomplete block designs. Contains function to generate A- and D-efficient binary incomplete block designs with given numbers of treatments, number of blocks and block size. Contains function to generate an incomplete block design with specified concurrence matrix. There are functions to generate balanced treatment incomplete block designs and incomplete block designs for test versus control treatments comparisons with specified concurrence matrix. Allows performing analysis of variance of data and computing estimated marginal means of factors from experiments using a connected incomplete block design. Tests of hypothesis of treatment contrasts in incomplete block design set up is supported.
This package implements an S7 class for estimates based on influence functions, with forward mode automatic differentiation defined for standard arithmetic operations.
Calculates insulin secretion rates from C-peptide values based on the methods described in Van Cauter et al. (1992) <doi:10.2337/diab.41.3.368>. Includes functions to calculate estimated insulin secretion rates using linear or cubic spline interpolation of c-peptide values (see Eaton et al., 1980 <doi:10.1210/jcem-51-3-520> and Polonsky et al., 1986 <doi:10.1172/JCI112308>) and to calculate estimates of input coefficients (volume of distribution, short half life, long half life, and fraction attributed to short half life) as described by Van Cauter. Although the generated coefficients are specific to insulin secretion, the two-compartment secretion model used here is useful for certain applications beyond insulin.
Implementation of a KL-based scoring rule to assess the quality of different missing value imputations in the broad sense as introduced in Michel et al. (2021) <arXiv:2106.03742>.
We provide the collection of data-sets used in the book An Introduction to Statistical Learning with Applications in R, Second Edition'. These include many data-sets that we used in the first edition (some with minor changes), and some new datasets.
The improved trimmed weighted Hochberg procedure provides increased statistical power and relaxes the dependence assumptions for familywise error rate control compared to the original weighted Hochberg procedure. This package computes the boundaries required for implementing the proposed methodology and includes sample size optimization methods. See Gou, J., Chang, Y., Li, T., and Zhang, F.(2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.
An R implementation of Matthew Thomas's Python library inteq'. First, this solves Fredholm integral equations of the first kind ($f(s) = \int_a^b K(s, y) g(y) dy$) using methods described by Twomey (1963) <doi:10.1145/321150.321157>. Second, this solves Volterra integral equations of the first kind ($f(s) = \int_0^s K(s,y) g(t) dt$) using methods from Betto and Thomas (2021) <doi:10.48550/arXiv.2106.08496>. Third, this solves Voltera integral equations of the second kind ($g(s) = f(s) + \int_a^s K(s,y) g(y) dy$) using methods from Linz (1969) <doi:10.1137/0706034>.
Interlinearized glossed texts (IGT) are used in descriptive linguistics for representing a morphological analysis of a text through a morpheme-by-morpheme gloss. InterlineaR provide a set of functions that targets several popular formats of IGT ('SIL Toolbox', EMELD XML') and that turns an IGT into a set of data frames following a relational model (the tables represent the different linguistic units: texts, sentences, word, morphems). The same pieces of software ('SIL FLEX', SIL Toolbox') typically produce dictionaries of the morphemes used in the glosses. InterlineaR provide a function for turning the LIFT XML dictionary format into a set of data frames following a relational model in order to represent the dictionary entries, the sense(s) attached to the entries, the example(s) attached to senses, etc.
Prepare objects to implement models over spatial and spacetime domains with the INLA package (<https://www.r-inla.org>). These objects contain data to for the cgeneric interface in INLA', enabling fast parallel computations. We implemented the spatial barrier model, see Bakka et. al. (2019) <doi:10.1016/j.spasta.2019.01.002>, and some of the spatio-temporal models proposed in Lindgren et. al. (2024) <https://raco.cat/index.php/SORT/article/view/428665>. Details are provided in the available vignettes and from the URL bellow.
Helper functions and example data sets to facilitate the estimation of IRTree models from data with different shape and using different software.
This package provides tools to analyze point patterns in space occurring over planar network structures derived from graph-related intensity measures for undirected, directed, and mixed networks. This package is based on the following research: Eckardt and Mateu (2018) <doi:10.1080/10618600.2017.1391695>. Eckardt and Mateu (2021) <doi:10.1007/s11749-020-00720-4>.
Perform common calculations based on published stable isotope theory, such as calculating carbon isotope discrimination and intrinsic water use efficiency from wood or leaf carbon isotope composition. See Mathias and Hudiburg (2022) in Global Change Biology <doi:10.1111/gcb.16407>.
This package implements the Interpolate, Truncate, Project (ITP) root-finding algorithm developed by Oliveira and Takahashi (2021) <doi:10.1145/3423597>. The user provides the function, from the real numbers to the real numbers, and an interval with the property that the values of the function at its endpoints have different signs. If the function is continuous over this interval then the ITP method estimates the value at which the function is equal to zero. If the function is discontinuous then a point of discontinuity at which the function changes sign may be found. The function can be supplied using either an R function or an external pointer to a C++ function. Tuning parameters of the ITP algorithm can be set by the user. Default values are set based on arguments in Oliveira and Takahashi (2021).
Estimate confidence intervals for mean, proportion, mean difference for unpaired and paired samples and proportion difference. Plot the confidence intervals. Generate documents explaining the statistical result step by step.
In view of the analysis of the structural characteristics of the tripartite network has been complete, however, there is still a lack of a unified operation that can quickly obtain the corresponding characteristics of the tripartite network. To solve this insufficiency, ILSM was designed for supporting calculating such metrics of tripartite networks by functions of this R package.
Allows the construction selection indices based on estimated breeding values in animal and plant breeding and to calculate several analytic measures around to assess its impact on genetic and phenotypic progress. The methodology thereby allows to analyze genetic gain of traits in the breeding goal which are not part of the actual index and automatically computes several analytic measures. It further allows to retrospectively derive realized economic weights from observed genetic trends. The framework is described in Simianer, H., Heise, J., Rensing, S., Pook, T. Geibel, J. and Reimer, C. (2023) <doi:10.1186/s12711-023-00807-0>.