Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Extract and replace elements using indices that start from zero (rather than one), as is common in mathematical notation and other programming languages.
This package provides a collection of datasets containing a variety of in vitro toxicokinetic measurements including -- but not limited to -- chemical fraction unbound in the presence of plasma (f_up), intrinsic hepatic clearance (Clint, uL/min/million hepatocytes), and membrane permeability for oral absorption (Caco2). The datasets provided by the package were processed and analyzed with the companion invitroTKstats package.
Intervention analysis is used to investigate structural changes in data resulting from external events. Traditional time series intervention models, viz. Autoregressive Integrated Moving Average model with exogeneous variables (ARIMA-X) and Artificial Neural Networks with exogeneous variables (ANN-X), rely on linear intervention functions such as step or ramp functions, or their combinations. In this package, the Gompertz, Logistic, Monomolecular, Richard and Hoerl function have been used as non-linear intervention function. The equation of the above models are represented as: Gompertz: A * exp(-B * exp(-k * t)); Logistic: K / (1 + ((K - N0) / N0) * exp(-r * t)); Monomolecular: A * exp(-k * t); Richard: A + (K - A) / (1 + exp(-B * (C - t)))^(1/beta) and Hoerl: a*(b^t)*(t^c).This package introduced algorithm for time series intervention analysis employing ARIMA and ANN models with a non-linear intervention function. This package has been developed using algorithm of Yeasin et al. <doi:10.1016/j.hazadv.2023.100325> and Paul and Yeasin <doi:10.1371/journal.pone.0272999>.
Starting from user-supplied institutional data, these scripts transform, aggregate, and reshape the information to produce key-value pair data files that are able to be uploaded to IPEDS (Integrated Postsecondary Education Data System) through their submission portal <https://surveys.nces.ed.gov/ipeds/>. Starting data specifications can be found in the vignettes. Final files are saved locally to a location of the user's choice. User-friendly readable files can also be produced for purposes of data review and validation.
This package provides a set of tools to i) identify geographic areas with significant change over time in drug utilization, and ii) characterize common change over time patterns among the time series for multiple geographic areas. For reference, see below: 1. Song, J., Carey, M., Zhu, H., Miao, H., Ram´ırez, J. C., & Wu, H. (2018) <doi:10.1504/IJCBDD.2018.10011910> 2. Wu, S., Wu, H. (2013) <doi:10.1186/1471-2105-14-6> 3. Carey, M., Wu, S., Gan, G. & Wu, H. (2016) <doi:10.1016/j.idm.2016.07.001>.
This package provides a general-purpose workflow for image segmentation using TensorFlow models based on the U-Net architecture by Ronneberger et al. (2015) <arXiv:1505.04597> and the U-Net++ architecture by Zhou et al. (2018) <arXiv:1807.10165>. We provide pre-trained models for assessing canopy density and understory vegetation density from vegetation photos. In addition, the package provides a workflow for easily creating model input and model architectures for general-purpose image segmentation based on grayscale or color images, both for binary and multi-class image segmentation.
Call wrappers for Istanbul Metropolitan Municipality's Open Data Portal (Turkish: İstanbul BüyükŠehir Belediyesi Açık Veri Portalı) at <https://data.ibb.gov.tr/en/>.
We construct the explicit form of clamped cubic interpolating spline (both uniform - knots are equidistant and non-uniform - knots are arbitrary). Using this form, we propose a linear regression model suitable for real data smoothing.
Addresses the log of zero by developing a new family of estimators called iterated Ordinary Least Squares. This family nests standard approaches such as log-linear and Poisson regressions, offers several computational advantages, and corresponds to the correct way to perform the popular log(Y + 1) transformation. For more details about how to use it, see the notebook at: <https://www.davidbenatia.com/>.
Code to specify, run, and then visualize and analyze the results of Ixodidae (hard-bodied ticks) population and infection dynamics models. Such models exist in the literature, but the source code to run them is not always available. IxPopDyMod provides an easy way for these models to be written and shared.
This package provides a comprehensive analytics framework for building reproducible pipelines on T-cell and B-cell immune receptor repertoire data. Delivers multi-modal immune profiling (bulk, single-cell, CITE-seq/AbSeq, spatial, immunogenicity data), feature engineering (ML-ready feature tables and matrices), and biomarker discovery workflows (cohort comparisons, longitudinal tracking, repertoire similarity, enrichment). Provides a user-friendly interface to widely used AIRR methods â clonality/diversity, V(D)J usage, similarity, annotation, tracking, and many more. Think Scanpy or Seurat, but for AIRR data, a.k.a. Adaptive Immune Receptor Repertoire, VDJ-seq, RepSeq, or VDJ sequencing data. A successor to our previously published "tcR" R package (Nazarov 2015).
IRT-M is a semi-supervised approach based on Bayesian Item Response Theory that produces theoretically identified underlying dimensions from input data and a constraints matrix. The methodology is fully described in Morucci et al. (2024), "Measurement That Matches Theory: Theory-Driven Identification in Item Response Theory Models"'. Details are available at <https://www.cambridge.org/core/journals/american-political-science-review/article/measurement-that-matches-theory-theorydriven-identification-in-item-response-theory-models/395DA1DFE3DCD7B866DC053D7554A30B>.
Perform common calculations based on published stable isotope theory, such as calculating carbon isotope discrimination and intrinsic water use efficiency from wood or leaf carbon isotope composition. See Mathias and Hudiburg (2022) in Global Change Biology <doi:10.1111/gcb.16407>.
This package provides API access to the <http://imdbapi.net> which maintains metadata about movies, games and television shows through a public API.
Helps with the thoughtful saving, reading, and management of result files (using rds files). The core functions take a list of parameters that are used to generate a unique hash to save results under. Then, the same parameter list can be used to read those results back in. This is helpful to avoid clunky file naming when running a large number of simulations. Additionally, helper functions are available for compiling a flat file of parameters of saved results, monitoring result usage, and cleaning up unwanted or unused results. For more information, visit the indexr homepage <https://lharris421.github.io/indexr/>.
This package provides functions and data sets to accompany the book Integrated Population Models: Theory and Ecological Applications with R and JAGS by Michael Schaub and Marc Kéry (ISBN: 9780128205648).
This package provides a toolkit for causal inference in experimental and observational studies. Implements various simple Bayesian models including linear, negative binomial, and logistic regression for impact estimation. Provides functionality for randomization and checking baseline equivalence in experimental designs. The package aims to simplify the process of impact measurement for researchers and analysts across different fields. Examples and detailed usage instructions are available at <https://book.martinez.fyi>.
Methodology for subgroup selection in the context of isotonic regression including methods for sub-Gaussian errors, classification, homoscedastic Gaussian errors and quantile regression. See the documentation of ISS(). Details can be found in the paper by Müller, Reeve, Cannings and Samworth (2023) <arXiv:2305.04852v2>.
Fit Spatial Econometrics models using Bayesian model averaging on models fitted with INLA. The INLA package can be obtained from <https://www.r-inla.org>.
This package provides a variety of methods for estimating intrinsic dimension of data sets (i.e the manifold or Hausdorff dimension of the support of the distribution that generated the data) as reviewed in Johnsson, K. (2016, ISBN:978-91-7623-921-6) and Johnsson, K., Soneson, C. and Fontes, M. (2015) <doi:10.1109/TPAMI.2014.2343220>. Furthermore, to evaluate the performance of these estimators, functions for generating data sets with given intrinsic dimensions are provided.
Computes bilateral and multilateral index numbers. It has support for many standard bilateral indexes as well as multilateral index number methods such as GEKS, GEKS-Tornqvist (or CCDI), Geary-Khamis and the weighted time product dummy (for details on these methods see Diewert and Fox (2020) <doi:10.1080/07350015.2020.1816176>). It also supports updating of multilateral indexes using several splicing methods.
Enables Python'-like importing/loading of packages or functions with aliasing to prevent namespace conflicts.
This package provides a straightforward interface for accessing the IMF (International Monetary Fund) data JSON API, available at <https://data.imf.org/>. This package offers direct access to the primary API endpoints: Dataflow, DataStructure, and CompactData. And, it provides an intuitive interface for exploring available dimensions and attributes, as well as querying individual time-series datasets. Additionally, the package implements a rate limit on API calls to reduce the chances of exceeding service limits (limited to 10 calls every 5 seconds) and encountering response errors.
Simulation of the random evolution of heterogeneous populations using stochastic Individual-Based Models (IBMs) <doi:10.48550/arXiv.2303.06183>. The package enables users to simulate population evolution, in which individuals are characterized by their age and some characteristics, and the population is modified by different types of events, including births/arrivals, death/exit events, or changes of characteristics. The frequency at which an event can occur to an individual can depend on their age and characteristics, but also on the characteristics of other individuals (interactions). Such models have a wide range of applications. For instance, IBMs can be used for simulating the evolution of a heterogeneous insurance portfolio with selection or for validating mortality forecasts. This package overcomes the limitations of time-consuming IBMs simulations by implementing new efficient algorithms based on thinning methods, which are compiled using the Rcpp package while providing a user-friendly interface.