Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements the conditional inference forest approach to modeling interval-censored survival data. It also provides functions to tune the parameters and evaluate the model fit. See Yao et al. (2019) <arXiv:1901.04599>.
This package provides user-friendly tools for calibration in survey sampling. The package is production-oriented, and its interface is inspired by the famous popular macro Calmar for SAS, so that Calmar users can quickly get used to icarus'. In addition to calibration (with linear, raking and logit methods), icarus features functions for calibration on tight bounds and penalized calibration.
Analysis and visualization of experimentally elucidated mutational signatures -- the kind of analysis and visualization in Boot et al., "In-depth characterization of the cisplatin mutational signature in human cell lines and in esophageal and liver tumors", Genome Research 2018, <doi:10.1101/gr.230219.117> and "Characterization of colibactin-associated mutational signature in an Asian oral squamous cell carcinoma and in other mucosal tumor types", Genome Research 2020 <doi:10.1101/gr.255620.119>. ICAMS stands for In-depth Characterization and Analysis of Mutational Signatures. ICAMS has functions to read in variant call files (VCFs) and to collate the corresponding catalogs of mutational spectra and to analyze and plot catalogs of mutational spectra and signatures. Handles both "counts-based" and "density-based" (i.e. representation as mutations per megabase) mutational spectra or signatures.
This package provides functions to compute and plot Krippendorff's inter-coder reliability coefficient alpha and bootstrapped uncertainty estimates (Krippendorff 2004, ISBN:0761915443). The bootstrap routines are set up to make use of parallel threads where supported.
This package provides a systematic framework for integrating multiple modalities of assays profiled on the same set of samples. The goal is to identify genes that are altered in cancer either marginally or consistently across different assays. The heterogeneity among different platforms and different samples are automatically adjusted so that the overall alteration magnitude can be accurately inferred. See Tong and Coombes (2012) <doi:10.1093/bioinformatics/bts561>.
Imputing blockwise missing data by imprecise imputation, featuring a domain-based, variable-wise, and case-wise strategy. Furthermore, the estimation of lower and upper bounds for unconditional and conditional probabilities based on the obtained imprecise data is implemented. Additionally, two utility functions are supplied: one to check whether variables in a data set contain set-valued observations; and another to merge two already imprecisely imputed data. The method is described in a technical report by Endres, Fink and Augustin (2018, <doi:10.5282/ubm/epub.42423>).
Allows the construction selection indices based on estimated breeding values in animal and plant breeding and to calculate several analytic measures around to assess its impact on genetic and phenotypic progress. The methodology thereby allows to analyze genetic gain of traits in the breeding goal which are not part of the actual index and automatically computes several analytic measures. It further allows to retrospectively derive realized economic weights from observed genetic trends. The framework is described in Simianer, H., Heise, J., Rensing, S., Pook, T. Geibel, J. and Reimer, C. (2023) <doi:10.1186/s12711-023-00807-0>.
This package provides a variational Bayesian approach for fast integrative clustering and feature selection, facilitating the analysis of multi-view, mixed type, high-dimensional datasets with applications in fields like cancer research, genomics, and more.
Implementation of some of the formulations for the thermodynamic and transport properties released by the International Association for the Properties of Water and Steam (IAPWS). More specifically, the releases R1-76(2014), R5-85(1994), R6-95(2018), R7-97(2012), R8-97, R9-97, R10-06(2009), R11-24, R12-08, R15-11, R16-17(2018), R17-20 and R18-21 at <https://iapws.org>.
This package provides an up-to-date version of the InvaCost database (<doi:10.6084/m9.figshare.12668570>) in R, and several functions to analyse the costs of invasive alien species (<doi:10.1111/2041-210X.13929>).
Estimation and diagnostic tools for instrumental variables designs, which implements the guidelines proposed in Lal et al. (2023) <arXiv:2303.11399>, including bootstrapped confidence intervals, effective F-statistic, Anderson-Rubin test, valid-t ratio test, and local-to-zero tests.
Distributional regression under stochastic order restrictions for numeric and binary response variables and partially ordered covariates. See Henzi, Ziegel, Gneiting (2020) <arXiv:1909.03725>.
Fitting and validation of machine learning algorithms for volume prediction of trees, currently for conifer trees based on diameter at breast height and height as explanatory variables.
These datasets and functions accompany Wolfe and Schneider (2017) - Intuitive Introductory Statistics (ISBN: 978-3-319-56070-0) <doi:10.1007/978-3-319-56072-4>. They are used in the examples throughout the text and in the end-of-chapter exercises. The datasets are meant to cover a broad range of topics in order to appeal to the diverse set of interests and backgrounds typically present in an introductory Statistics class.
Calculation of key bacterial growth curve parameters using fourth degree polynomial functions. Six growth curve parameters are provided including peak growth rate, doubling time, lag time, maximum growth, and etc. ipolygrowth takes time series data from individual biological samples (with technical replicates) or multiple samples.
Carry out comparative authorship analysis of disputed and undisputed texts within the Likelihood Ratio Framework for expressing evidence in forensic science. This package contains implementations of well-known algorithms for comparative authorship analysis, such as Smith and Aldridge's (2011) Cosine Delta <doi:10.1080/09296174.2011.533591> or Koppel and Winter's (2014) Impostors Method <doi:10.1002/asi.22954>, as well as functions to measure their performance and to calibrate their outputs into Log-Likelihood Ratios.
Read data from LimeSurvey (<https://www.limesurvey.org/>) in a comfortable way. Heavily inspired by limer (<https://github.com/cloudyr/limer/>), which lacked a few comfort features for me.
This is a shiny app used for the statistical classifying and analysing pre-clinical tumour responses.
Combining genomic prediction with Monte Carlo simulation, three different strategies are implemented to select parental lines for multiple traits in plant breeding. The selection strategies include (i) GEBV-O considers only genomic estimated breeding values (GEBVs) of the candidate individuals; (ii) GD-O considers only genomic diversity (GD) of the candidate individuals; and (iii) GEBV-GD considers both GEBV and GD. The above method can be seen in Chung PY, Liao CT (2020) <doi:10.1371/journal.pone.0243159>. Multi-trait genomic best linear unbiased prediction (MT-GBLUP) model is used to simultaneously estimate GEBVs of the target traits, and then a selection index is adopted to evaluate the composite performance of an individual.
Calculate B-spline basis functions with a given set of knots and order, or a B-spline function with a given set of knots and order and set of de Boor points (coefficients), or the integral of a B-spline function.
Calculation of informative simultaneous confidence intervals for graphical described multiple test procedures and given information weights. Bretz et al. (2009) <doi:10.1002/sim.3495> and Brannath et al. (2024) <doi:10.48550/arXiv.2402.13719>. Furthermore, exploration of the behavior of the informative bounds in dependence of the information weights. Comparisons with compatible bounds are possible. Strassburger and Bretz (2008) <doi:10.1002/sim.3338>.
Simple plotting function(s) for exploratory data analysis with flexible options allowing for easy plot customisation. The goal is to make it easy for beginners to start exploring a dataset through simple R function calls, as well as provide a similar interface to summary statistics and inference information. Includes functionality to generate interactive HTML-driven graphs. Used by iNZight', a graphical user interface providing easy exploration and visualisation of data for students of statistics, available in both desktop and online versions.
You can access to open data published in Instituto Canario De Estadistica (ISTAC) APIs at <https://datos.canarias.es/api/estadisticas/>.
Implementation of Isolation kernel (Qin et al. (2019) <doi:10.1609/aaai.v33i01.33014755>).