Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Extract and replace elements using indices that start from zero (rather than one), as is common in mathematical notation and other programming languages.
This package provides tools for importing, merging, and analysing data from international assessment studies (TIMSS, PIRLS, PISA, ICILS, and PIAAC).
The ISA is a biclustering algorithm that finds modules in an input matrix. A module or bicluster is a block of the reordered input matrix.
Imputation of longitudinal categorical covariates. We use a methodological framework which ensures that the plausibility of transitions is preserved, overfitting and colinearity issues are resolved, and confounders can be utilized. See Mamouris (2023) <doi:10.1002/sim.9919> for an overview.
The Interactive Tree Of Life <https://itol.embl.de/> online server can edit and annotate trees interactively. The itol.toolkit package can support all types of annotation templates.
This package provides facilities of general to specific model selection for exogenous regressors in 2SLS models. Furthermore, indicator saturation methods can be used to detect outliers and structural breaks in the sample.
Compute missing values on a training data set and impute them on a new data set. Current available options are median/mode and random forest.
Biodiversity is a multifaceted concept covering different levels of organization from genes to ecosystems. iNEXT.3D extends iNEXT to include three dimensions (3D) of biodiversity, i.e., taxonomic diversity (TD), phylogenetic diversity (PD) and functional diversity (FD). This package provides functions to compute standardized 3D diversity estimates with a common sample size or sample coverage. A unified framework based on Hill numbers and their generalizations (Hill-Chao numbers) are used to quantify 3D. All 3D estimates are in the same units of species/lineage equivalents and can be meaningfully compared. The package features size- and coverage-based rarefaction and extrapolation sampling curves to facilitate rigorous comparison of 3D diversity across individual assemblages. Asymptotic 3D diversity estimates are also provided. See Chao et al. (2021) <doi:10.1111/2041-210X.13682> for more details.
Ternary plots made simple. This package allows to create ternary plots using graphics'. It provides functions to display the data in the ternary space, to add or tune graphical elements and to display statistical summaries. It also includes common ternary diagrams which are useful for the archaeologist (e.g. soil texture charts, ceramic phase diagram).
R interface to access the web services of the ICES (International Council for the Exploration of the Sea) DATRAS trawl survey database <https://datras.ices.dk/WebServices/Webservices.aspx>.
Estimates the intraclass correlation coefficient (ICC) for count data to assess repeatability (intra-methods concordance) and concordance (between-method concordance). In the concordance setting, the ICC is equivalent to the concordance correlation coefficient estimated by variance components. The ICC is estimated using the estimates from generalized linear mixed models. The within-subjects distributions considered are: Poisson; Negative Binomial with additive and proportional extradispersion; Zero-Inflated Poisson; and Zero-Inflated Negative Binomial with additive and proportional extradispersion. The statistical methodology used to estimate the ICC with count data can be found in Carrasco (2010) <doi:10.1111/j.1541-0420.2009.01335.x>.
This package provides an estimator for generalized linear models with incomplete data for discrete covariates. The estimation is based on the EM algorithm by the method of weights by Ibrahim (1990) <DOI:10.2307/2290013>.
This package provides new imputation methods for the mice package based on generalized additive models for location, scale, and shape (GAMLSS) as described in de Jong, van Buuren and Spiess <doi:10.1080/03610918.2014.911894>.
This package provides native R access to Interactive Brokers Trader Workstation API.
This package provides a set of functions for performing null hypothesis testing on samples of persistence diagrams using the theory of permutations. Currently, only two-sample testing is implemented. Inputs can be either samples of persistence diagrams themselves or vectorizations. In the former case, they are embedded in a metric space using either the Bottleneck or Wasserstein distance. In the former case, persistence data becomes functional data and inference is performed using tools available in the fdatest package. Main reference for the interval-wise testing method: Pini A., Vantini S. (2017) "Interval-wise testing for functional data" <doi:10.1080/10485252.2017.1306627>. Main reference for inference on populations of networks: Lovato, I., Pini, A., Stamm, A., & Vantini, S. (2020) "Model-free two-sample test for network-valued data" <doi:10.1016/j.csda.2019.106896>.
Derivation of indexes for benchmarking purposes. A methodology with flexible number of constituents is implemented. Also functions for market capitalization and volume weighted indexes with fixed number of constituents are available. The main function of the package, indexComp(), provides the derived index, suitable for analysis purposes. The functions indexUpdate(), indexMemberSelection() and indexMembersUpdate() are components of indexComp() and enable one to construct and continuously update an index, e.g. for display on a website. The methodology behind the functions provided gets introduced in Trimborn and Haerdle (2018) <doi:10.1016/j.jempfin.2018.08.004>.
Automates the identification and comparative evaluation of item-removal strategies in exploratory factor analysis, producing transparent summaries (explained variance, loading ranges, reliability) to support comfortable, reproducible decisions. The criteria are based on best practices and established heuristics (e.g., Costello & Osborne (2005) <doi:10.7275/jyj1-4868>, Howard (2016) <doi:10.1080/10447318.2015.1087664>).
This package contains techniques for mining large and high-dimensional data sets by using the concept of Intrinsic Dimension (ID). Here the ID is not necessarily an integer. It is extended to fractal dimensions. And the Morisita estimator is used for the ID estimation, but other tools are included as well.
Drawing statistical inference on the coefficients of a short- or long-horizon predictive regression with persistent regressors by using the IVX method of Magdalinos and Phillips (2009) <doi:10.1017/S0266466608090154> and Kostakis, Magdalinos and Stamatogiannis (2015) <doi:10.1093/rfs/hhu139>.
Cluster sampling is a valuable approach when constructing a comprehensive list of individual units is challenging. It provides operational and cost advantages. This package is designed to test the efficiency of cluster sampling in terms cluster variance and design effect in context to crop surveys. This package has been developed using the algorithm of Iqbal et al. (2018) <doi:10.19080/BBOAJ.2018.05.555673>.
Intensity-duration-frequency (IDF) curves are a widely used analysis-tool in hydrology to assess extreme values of precipitation [e.g. Mailhot et al., 2007, <doi:10.1016/j.jhydrol.2007.09.019>]. The package IDF provides functions to estimate IDF parameters for given precipitation time series on the basis of a duration-dependent generalized extreme value distribution [Koutsoyiannis et al., 1998, <doi:10.1016/S0022-1694(98)00097-3>].
Multivariate outlier detection is performed using invariant coordinates where the package offers different methods to choose the appropriate components. ICS is a general multivariate technique with many applications in multivariate analysis. ICSOutlier offers a selection of functions for automated detection of outliers in the data based on a fitted ICS object or by specifying the dataset and the scatters of interest. The current implementation targets data sets with only a small percentage of outliers.
This package provides functions to fetch market data, search historical prices, execute trades, and get account details from the IG Trading REST API <https://labs.ig.com>. Returns tidy tibbles for easy analysis. Trading contracts for difference (CFDs), options and spread bets carries a high risk of losing money. This package is not financial or trading advice.
Non-parametric resampling-based inference tests for ExPosition.