Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This minimalist package is designed to quickly score raw data outputted from an Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) <doi:10.1037/0022-3514.74.6.1464>. IAT scores are calculated as specified by Greenwald, Nosek, and Banaji (2003) <doi:10.1037/0022-3514.85.2.197>. Outputted values can be interpreted as effect sizes. The input function consists of three arguments. First, indicate the name of the dataset to be analyzed. This is the only required input. Second, indicate the number of trials in your entire IAT (the default is set to 219, which is typical for most IATs). Last, indicate whether congruent trials (e.g., flowers and pleasant) or incongruent trials (e.g., guns and pleasant) were presented first for this participant (the default is set to congruent). The script will tell you how long it took to run the code, the effect size for the participant, and whether that participant should be excluded based on the criteria outlined by Greenwald et al. (2003). Data files should consist of six columns organized in order as follows: Block (0-6), trial (0-19 for training blocks, 0-39 for test blocks), category (dependent on your IAT), the type of item within that category (dependent on your IAT), a dummy variable indicating whether the participant was correct or incorrect on that trial (0=correct, 1=incorrect), and the participantâ s reaction time (in milliseconds). Three sample datasets are included in this package (labeled IAT', TooFastIAT', and BriefIAT') to practice with.
This package provides functions for modeling and forecasting time series data. Forecasting is based on the innovations algorithm. A description of the innovations algorithm can be found in the textbook "Introduction to Time Series and Forecasting" by Peter J. Brockwell and Richard A. Davis.
The functions compute the double-entry intraclass correlation, which is an index of profile similarity (Furr, 2010; McCrae, 2008). The double-entry intraclass correlation is a more precise index of the agreement of two empirically observed profiles than the often-used intraclass correlation (McCrae, 2008). Profiles comprising correlations are automatically transformed according to the Fisher z-transformation before the double-entry intraclass correlation is calculated. If the profiles comprise scores such as sum scores from various personality scales, it is recommended to standardize each individual score prior to computation of the double-entry intraclass correlation (McCrae, 2008). See Furr (2010) <doi:10.1080/00223890903379134> or McCrae (2008) <doi:10.1080/00223890701845104> for details.
Read and process isotopocule data from an Orbitrap Isotope Solutions mass spectrometer. Citation: Kantnerova et al. (Nature Protocols, 2024).
This package provides a collection of tools for detecting influential cases in generalized mixed effects models. It analyses models that were estimated using lme4'. The basic rationale behind identifying influential data is that when single units are omitted from the data, models based on these data should not produce substantially different estimates. To standardize the assessment of how influential a (single group of) observation(s) is, several measures of influence are common practice, such as Cook's Distance. In addition, we provide a measure of percentage change of the fixed point estimates and a simple procedure to detect changing levels of significance.
Estimation of joint models for multivariate longitudinal markers (with various distributions available) and survival outcomes (possibly accounting for competing risks) with Integrated Nested Laplace Approximations (INLA). The flexible and user friendly function joint() facilitates the use of the fast and reliable inference technique implemented in the INLA package for joint modeling. More details are given in the help page of the joint() function (accessible via ?joint in the R console) and the vignette associated to the joint() function (accessible via vignette("INLAjoint") in the R console).
This package provides functions for analyzing multiple choice items. These analyses include the convertion of student response into binaty data (correct/incorrect), the computation of the number of corrected responses and grade for each subject, the calculation of item difficulty and discrimination, the computation of the frecuency and point-biserial correlation for each distractor and the graphical analysis of each item.
This package provides a data clustering package based on admixture ratios (Q matrix) of population structure. The framework is based on iterative Pruning procedure that performs data clustering by splitting a given population into subclusters until meeting the condition of stopping criteria the same as ipPCA, iNJclust, and IPCAPS frameworks. The package also provides a function to retrieve phylogeny tree that construct a neighbor-joining tree based on a similar matrix between clusters. By given multiple Q matrices with varying a number of ancestors (K), the framework define a similar value between clusters i,j as a minimum number K* that makes majority of members of two clusters are in the different clusters. This K* reflexes a minimum number of ancestors we need to splitting cluster i,j into different clusters if we assign K* clusters based on maximum admixture ratio of individuals. The publication of this package is at Chainarong Amornbunchornvej, Pongsakorn Wangkumhang, and Sissades Tongsima (2020) <doi:10.1101/2020.03.21.001206>.
Interactive shiny application for running Item Response Theory analysis. Provides graphics for characteristic and information curves.
Implementation of the methodology proposed in Data-driven design of targeted gene panels for estimating immunotherapy biomarkers', Bradley and Cannings (2021) <arXiv:2102.04296>. This package allows the user to fit generative models of mutation from an annotated mutation dataset, and then further to produce tunable linear estimators of exome-wide biomarkers. It also contains functions to simulate mutation annotated format (MAF) data, as well as to analyse the output and performance of models.
It provides in-place operators for R that are equivalent to +=', -=', *=', /= in C++. Those can be applied on integer|double vectors|matrices. You have also access to sweep operations (in-place).
Some tools to assist with converting International Organization for Standardization (ISO) standard 11784 (ISO11784) animal ID codes between 4 recognised formats commonly displayed on Passive Integrated Transponder (PIT) tag readers. The most common formats are 15 digit decimal, e.g., 999123456789012, and 13 character hexadecimal dot format, e.g., 3E7.1CBE991A14. These are referred to in this package as isodecimal and isodothex. The other two formats are the raw hexadecimal representation of the ISO11784 binary structure (see <https://en.wikipedia.org/wiki/ISO_11784_and_ISO_11785>). There are two flavours of this format, a left and a right variation. Which flavour a reader happens to output depends on if the developers decided to reverse the binary number or not before converting to hexadecimal, a decision based on the fact that the PIT tags will transmit their binary code Least Significant Bit (LSB) first, or backwards basically.
An R client for the ipbase.com IP Geolocation API. The API requires registration of an API key. Basic features are free, some require a paid subscription. You can find the full API documentation at <https://ipbase.com/docs> .
Simple handling of survey data. Smart handling of meta-information like e.g. variable-labels value-labels and scale-levels. Easy access and validation of meta-information. Useage of value labels and values respectively for subsetting and recoding data.
This package provides tools for importing, merging, and analysing data from international assessment studies (TIMSS, PIRLS, PISA, ICILS, and PIAAC).
Identity by Descent (IBD) distributions in pedigrees. A Hidden Markov Model is used to compute identity coefficients, simulate IBD segments and to derive the distribution of total IBD sharing and segment count across chromosomes. The methods are applied in Kruijver (2025) <doi:10.3390/genes16050492>. The probability that the total IBD sharing is zero can be computed using the method of Donnelly (1983) <doi:10.1016/0040-5809(83)90004-7>.
This package provides two different methods, linear and nonlinear, to interpolate a bivariate function, scalar-valued or vector-valued. The interpolated data are not necessarily gridded. The algorithms are performed by the C++ library CGAL (<https://www.cgal.org/>).
Fit a predictive model using iteratively reweighted boosting (IRBoost) to minimize robust loss functions within the CC-family (concave-convex). This constitutes an application of iteratively reweighted convex optimization (IRCO), where convex optimization is performed using the functional descent boosting algorithm. IRBoost assigns weights to facilitate outlier identification. Applications include robust generalized linear models and robust accelerated failure time models. Wang (2025) <doi:10.6339/24-JDS1138>.
This package provides a non-parametric effect size measure capturing changes in central tendency or shape of data distributions. The package provides the necessary functions to calculate and plot the Impact effect size measure between two groups.
This package provides functions to estimate the probability to receive the observed treatment, based on individual characteristics. The inverse of these probabilities can be used as weights when estimating causal effects from observational data via marginal structural models. Both point treatment situations and longitudinal studies can be analysed. The same functions can be used to correct for informative censoring.
Offers modeling the association between gene-expression and bioassay data, taking care of the effect due to a fingerprint feature and helps with several plots to better understand the analysis.
Fit parametric models for time-to-event data that show an initial incubation period', i.e., a variable delay phase where the hazard is zero. The delayed Weibull distribution serves as foundational data model. The specific method of MPSE (maximum product of spacings estimation) and MLE-based methods are used for parameter estimation. Bootstrap confidence intervals for parameters and significance tests in a two group setting are provided.
Run quality checks on data sets using the same checks that are conducted on the ICES Data Submission Utility (DATSU) <https://datsu.ices.dk>.
An implementation of the induced smoothing (IS) idea to lasso regularization models to allow estimation and inference on the model coefficients (currently hypothesis testing only). Linear, logistic, Poisson and gamma regressions with several link functions are implemented. The algorithm is described in the original paper; see <doi:10.1177/0962280219842890> and discussed in a tutorial <doi:10.13140/RG.2.2.16360.11521>.